[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]植物根系分泌物主要生态功能研究进展
收稿日期: 2020-03-05
录用日期: 2020-09-08
网络出版日期: 2020-10-14
基金资助
陕西省林业科技创新计划(SXLK2020-0101);国家自然科学基金(41771549);国家自然科学基金(42077452)
Research Advances in the Main Ecological Functions of Root Exudates
Received date: 2020-03-05
Accepted date: 2020-09-08
Online published: 2020-10-14
李佳佳, 樊妙春, 上官周平 . 植物根系分泌物主要生态功能研究进展[J]. 植物学报, 2020 , 55(6) : 788 -796 . DOI: 10.11983/CBB20036
Root exudates play an important role in root-soil-microorganism interactions and ecological feedback mechanisms. Root exudates are considered as the medium of “rhizosphere dialogue” in the process of complex plant rhizosphere network interaction, with great impact in regulating plant adaptation to microhabitats, thus alleviating rhizosphere nutrient competition and constructing rhizosphere microbial community structure. Here, we review the recent advances on the effects of root exudates on plant growth, soil microbial characteristics such as soil enzymes, microbial biomass, and microbial community, and soil nutrient circulation. We also propose the important directions and contents of future research on root exudates.
Key words: rhizosphere; root exudates; soil microorganisms; carbon cycle
[1] | 高雪峰 (2017). 短花针茅荒漠草原优势植物根系分泌物及其主要组分对土壤微生物的影响. 博士论文. 呼和浩特: 内蒙古农业大学. pp. 1-104. |
[2] | 耿贵 (2011). 作物根系分泌物对土壤碳、氮含量、微生物数量和酶活性的影响. 博士论文. 沈阳: 沈阳农业大学. pp. 1-72. |
[3] | 洪常青, 聂艳丽 (2003). 根系分泌物及其在植物营养中的作用. 生态环境 12, 508-511. |
[4] | 黄玉茜, 韩晓日, 杨劲峰, 韩梅, 白洪志 (2015). 花生根系分泌物对土壤微生物学特性及群落功能多样性的影响. 沈阳农业大学学报 46, 48-54. |
[5] | 贾甜华 (2019). 三江源区退化高寒草地毒杂草植物根际微生物与根系分泌物的变化及相关性分析. 硕士论文. 兰州: 兰州大学. pp. 1-70. |
[6] | 李娇, 蒋先敏, 尹华军, 尹春英, 魏宇航, 刘庆 (2014). 不同林龄云杉人工林的根系分泌物与土壤微生物. 应用生态学报 25, 325-332. |
[7] | 李美璇 (2018). 根系分泌物对砷污染土壤中砷酸还原菌存活效应的影响. 硕士论文. 长春: 吉林大学. pp. 1-86. |
[8] | 李杨, 仲波, 陈冬明, 张楠楠, 孙庚 (2019). 不同浓度和多样性的根系分泌物对土壤团聚体稳定性的影响. 应用与环境生物学报 25, 1061-1067. |
[9] | 梁儒彪, 梁进, 乔明锋, 徐振锋, 刘庆, 尹华军 (2015). 模拟根系分泌物C:N化学计量特征对川西亚高山森林土壤碳动态和微生物群落结构的影响. 植物生态学报 39, 466-476. |
[10] | 刘苹, 赵海军, 万书波, 江丽华, 于淑芳, 杨力, 王艳琴, 李瑾 (2010). 花生根系分泌物自毒作用研究. 中国油料作物学报 32, 431-435. |
[11] | 刘庆, 肖娟, 李宇飞, 尹华军, 陈建中, 陈劲松 (2012). 一种根系分泌物原位收集装置及系统. 中国专利, CN201120557060.5. 2012-10-03. |
[12] | 刘艳霞, 李想, 蔡刘体, 张恒, 石俊雄 (2016). 烟草根系分泌物酚酸类物质的鉴定及其对根际微生物的影响. 植物营养与肥料学报 22, 418-428. |
[13] | 刘子雄, 朱天辉, 张建 (2005). 林木根系分泌物与根际微生物研究进展. 世界林业研究 18(6), 25-31. |
[14] | 陆茜 (2016). 杨树连栽对根际土壤环境演变的影响及其自毒效应研究. 博士论文. 南京: 南京林业大学. pp. 1-83. |
[15] | 马志良, 赵文强, 刘美, 刘庆 (2019). 增温对高寒灌丛根际和非根际土壤微生物生物量碳氮的影响. 应用生态学报 30, 1893-1900. |
[16] | 尚赏, 王平, 陈彩艳 (2011). 丛枝菌根形成过程及其信号转导途径. 植物生理学报 47, 331-338. |
[17] | 史刚荣 (2004). 植物根系分泌物的生态效应. 生态学杂志 23(1), 97-101. |
[18] | 石鑫 (2012). 刺槐根系分泌物研究. 硕士论文. 北京: 北京林业大学. pp. 1-48. |
[19] | 孙悦, 俆兴良, Kuzyakov Y (2014). 根际激发效应的发生机制及其生态重要性. 植物生态学报 38, 62-75. |
[20] | 王建花, 陈婷, 林文雄 (2013). 植物化感作用类型及其在农业中的应用. 中国生态农业学报 21, 1173-1183. |
[21] | 王树起, 韩晓增, 乔云发 (2007). 根系分泌物的化感作用及其对土壤微生物的影响. 土壤通报 38, 1219-1226. |
[22] | 王孝林, 王二涛 (2019). 根际微生物促进水稻氮利用的机制. 植物学报 54, 285-287. |
[23] | 王小平, 肖肖, 唐天文, 黎云祥, 肖娟 (2018). 连香树人工林根系分泌物输入季节性变化及其驱动的根际微生物特性研究. 植物研究 38, 47-55. |
[24] | 王占义, 潘宁, 罗茜, 沈宏 (2010). 一种新型根系分泌物收集装置与收集方法的介绍. 土壤学报 47, 747-752. |
[25] | 吴林坤, 林向民, 林文雄 (2014). 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报 38, 298-310. |
[26] | 夏志超 (2017). 根系分泌物介导的植物种间地下化学作用. 博士论文. 北京: 中国农业大学. pp. 1-103. |
[27] | 肖春旺, 杨帆, 柳隽瑶, 周勇, 苏佳琦, 梁韵, 裴智群 (2017). 陆地生态系统地下碳输入与输出过程研究进展. 植物学报 52, 652-668. |
[28] | 杨瑞秀, 高增贵, 姚远, 刘限, 孙淑清, 王莹 (2014). 甜瓜根系分泌物中酚酸物质对尖孢镰孢菌的化感效应. 应用生态学报 25, 2355-2360. |
[29] | 尹华军, 张子良, 刘庆 (2018). 森林根系分泌物生态学研究: 问题与展望. 植物生态学报 42, 1055-1070. |
[30] | 余婷, 孟焕文, 温艳斌, 程智慧 (2013). 白三叶根系分泌物对5种草坪草的化感作用. 草地学报 21, 729-736. |
[31] | 章芳芳 (2018). 根系分泌物对间作体系种间根系相互作用的调控及其关键成分研究. 博士论文. 北京: 中国农业大学. pp. 1-101. |
[32] | 张丽莉, 张玉兰, 陈利军, 武志杰 (2004). 稻-麦轮作系统土壤糖酶活性对开放式CO2浓度增高的响应. 应用生态学报 15, 1019-1024. |
[33] | 张文明, 邱慧珍, 张春红, 海龙 (2015). 马铃薯根系分泌物成分鉴别及其对立枯丝核菌的影响. 应用生态学报 26, 859-866. |
[34] | 赵小亮, 刘新虎, 贺江舟, 万传星, 龚明福, 张利莉 (2009). 棉花根系分泌物对土壤速效养分和酶活性及微生物数量的影响. 西北植物学报 29, 1426-1431. |
[35] | 周宝利, 刘娜, 叶雪凌, 鲁博 (2011). 嫁接茄子根系分泌物变化及其对黄萎菌的影响. 生态学报 31, 749-759. |
[36] | Benizri E, Nguyen C, Piutti S, Slezack-Deschaumes S, Philippot L (2007). Additions of maize root mucilage to soil changed the structure of the bacterial community. Soil Biol Biochem 39, 1230-1233. |
[37] | Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008). Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74, 738-744. |
[38] | Caldwell BA (2005). Enzyme activities as a component of soil biodiversity: a review. Pedobiologia 49, 637-644. |
[39] | Canarini A, Kaiser C, Merchant A, Richter A, Wanek W (2019). Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front Plant Sci 10, 157. |
[40] | Cheng WX, Parton WJ, Gonzalez-Meler MA, Phillips R, Asao S, McNickle GG, Brzostek E, Jastrow JD (2014). Synthesis and modeling perspectives of rhizosphere priming. New Phytol 201, 31-44. |
[41] | Craine JM, Morrow C, Fierer N (2007). Microbial nitrogen limitation increases decomposition. Ecology 88, 2105-2113. |
[42] | Dijkstra FA, Pendall E, Mosier AR, King JY, Milchunas DG, Morgan JA (2008). Long-term enhancement of N availability and plant growth under elevated CO2 in a semi-arid grassland. Funct Ecol 22, 975-982. |
[43] | Drake JE, Darby BA, Giasson MA, Kramer MA, Phillips RP, Finzi AC (2013). Stoichiometry constrains microbial response to root exudation-insights from a model and a field experiment in a temperate forest. Biogeosciences 10, 821-838. |
[44] | Du PP, Huang YH, Lü UX, Xiang L, Li YW, Li H, Mo CH, Cai QY, Li QX (2020). Rice root exudates enhance desorption and bioavailability of phthalic acid esters (PAEs) in soil associating with cultivar variation in PAE accumulation. Environ Res 186, 109611. |
[45] | Eisenhauer N, Lanoue A, Strecker T, Scheu S, Steinauer K, Thakur MP, Mommer L (2017). Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci Rep 7, 44641. |
[46] | Finzi AC, Abramoff RZ, Spiller KS, Brzostek ER, Darby BA, Kramer MA, Phillips RP (2015). Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Global Change Biol 21, 2082-2094. |
[47] | Fuhrer T, Zamboni N (2015). High-throughput discovery metabolomics. Curr Opin Biotechnol 31, 73-78. |
[48] | Hessen DO, ?gren GI, Anderson TR, Elser JJ, de Ruiter PC (2004). Carbon sequestration in ecosystems: the role of stoichiometry. Ecology 85, 1179-1192. |
[49] | Hopkins F, Gonzalez-Meler MA, Flower CE, Lynch DJ, Czimczik C, Tang JW, Subke JA (2013). Ecosystem- level controls on root-rhizosphere respiration. New Phytol 199, 339-351. |
[50] | Hu LF, Robert CAM, Cadot S, Zhang X, Ye M, Li BB, Manzo D, Chervet N, Steinger T, van der Heijden MGA, Schlaeppi K, Erb M (2018). Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Commun 9, 2738. |
[51] | Keiluweit M, Bougoure JJ, Nico PS, Pett-Ridge J, Weber PK, Kleber M (2015). Mineral protection of soil carbon counteracted by root exudates. Nat Climate Change 5, 588-595. |
[52] | Kemmitt SJ, Lanyon CV, Waite IS, Wen Q, Addiscott TM, Bird NRA, O’Donnell AG, Brookes PC (2008). Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass—a new perspective. Soil Biol Biochem 40, 61-73. |
[53] | Khan KS, Mack R, Castillo X, Kaiser M, Joergensen RG (2016). Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios. Geoderma 271, 115-123. |
[54] | Kumar T, Ray S, Brahmachary RL, Ghose M (2009). Preliminary GC-MS analysis of compounds present in the root exudates of three mangrove species. Acta Chromatogr 21, 117-125. |
[55] | Ku?lien? G, Rasmussen J, Kuzyakov Y, Eriksen J (2014). Medium-term response of microbial community to rhizodeposits of white clover and ryegrass and tracing of active processes induced by 13C and 15N labelled exudates . Soil Biol Biochem 76, 22-33. |
[56] | Lu T, Ke MJ, Lavoie M, Jin YJ, Fan XJ, Zhang ZY, Fu ZW, Sun LW, Gillings M, Pe?uelas J, Qian HF, Zhu YG (2018). Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome 6, 231. |
[57] | Martinière A, Gibrat R, Sentenac H, Dumont X, Gaillard I, Paris N (2018). Uncovering pH at both sides of the root plasma membrane interface using noninvasive imaging. Proc Natl Acad Sci USA 115, 6488-6493. |
[58] | Meier IC, Finzi AC, Phillips RP (2017). Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools. Soil Biol Biochem 106, 119-128. |
[59] | Mommer L, Kirkegaard J, van Ruijven J (2016). Root-root interactions: towards a rhizosphere framework. Trends Plant Sci 21, 209-217. |
[60] | Morgan JAW, Bending GD, White PJ (2005). Biological costs and benefits to plant-microbe interactions in the rhizosphere. J Exp Bot 417, 1729-1739. |
[61] | Paterson E, Gebbing T, Abel C, Sim A, Telfer G (2007). Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol 172, 600-610. |
[62] | Sasse J, Martinoia E, Northen T (2018). Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23, 25-41. |
[63] | Schimel DS (1995). Terrestrial ecosystems and the carbon cycle. Global Change Biol 1, 77-91. |
[64] | Shen X, Yang F, Xiao CW, Zhou Y (2020). Increased contribution of root exudates to soil carbon input during grassland degradation. Soil Biol Biochem 146, 107817. |
[65] | Sullivan BW, Hart SC (2013). Evaluation of mechanisms controlling the priming of soil carbon along a substrate age gradient. Soil Biol Biochem 58, 293-301. |
[66] | Tian K, Kong XS, Yuan LH, Lin H, He ZH, Yao B, Ji YL, Yang JB, Sun SC, Tian XJ (2019). Priming effect of litter mineralization: the role of root exudate depends on its interactions with litter quality and soil condition. Plant Soil 440, 457-471. |
[67] | Wutzler T, Reichstein M (2013). Priming and substrate quality interactions in soil organic matter models. Biogeosciences 10, 2089-2103. |
[68] | Yuan J, Raza W, Shen QR (2018a). Root exudates dominate the colonization of pathogen and plant growth-promoting rhizobacteria. In: Giri B, Prasad R, Varma A, eds. Root Biology. Cham: Springer. pp. 167-180. |
[69] | Yuan J, Zhao J, Wen T, Zhao ML, Li R, Goossens P, Huang QW, Bai Y, Vivanco JM, Kowalchuk GA, Berendsen RL, Shen QR (2018b). Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome 6, 156. |
[70] | Zhalnina K, Louie KB, Hao Z, Mansoori N, Da Rocha UN, Shi SJ, Cho H, Karaoz U, Loqué D, Bowen BP, Firestone MK, Northen TR, Brodie EL (2018). Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol 3, 470-480. |
[71] | Zhu B, Gutknecht JLM, Herman DJ, Keck DC, Firestone MK, Cheng WX (2014). Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biol Biochem 76, 183-192. |
/
〈 | 〉 |