植物转录因子与DNA互作研究技术
收稿日期: 2020-04-04
录用日期: 2020-06-28
网络出版日期: 2020-06-29
基金资助
国家自然科学基金(31870213)
Methods for Examining Transcription Factor-DNA Interaction in Plants
Received date: 2020-04-04
Accepted date: 2020-06-28
Online published: 2020-06-29
杨立文,刘双荣,李玉红,林荣呈 . 植物转录因子与DNA互作研究技术[J]. 植物学报, 2020 , 55(4) : 468 -474 . DOI: 10.11983/CBB20057
Transcription affects the growth and development of plants through regulating the spatio-temporal expression of downstream genes. The interaction between transcription factors and DNA is a key section in the process of exploring transcriptional regulatory networks. In the past few years, researchers utilize yeast one hybrid (Y1H) and electrophoresis mobility shift assay (EMSA) to examine whether a transcription factor directly interacts with target DNA. In addition, transient luciferase activity assay provides a convenient method for researchers to test the regulation of transcription factors on downstream gene expression. In this paper, we elaborate the principles, methods, and advantages and limitations of Y1H, EMSA and transient luciferase activity assay, to provide technical references for exploring the transcription factor-DNA interactions.
Key words: transcription factor; DNA; Y1H; EMSA; transient luciferase activity assay
[1] | 杨立文, 刘双荣, 林荣呈 (2019). 光信号与激素调控种子休眠和萌发研究进展. 植物学报 54, 569-581. |
[2] | Chen DQ, Xu G, Tang WJ, Jing YJ, Ji Q, Fei ZJ, Lin RC (2013). Antagonistic Basic Helix-Loop-Helix/bZIP transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling in Arabidopsis. Plant Cell 25, 1657-1673. |
[3] | Cheng MC, Enderle B, Kathare PK, Islam R, Hiltbrunner A, Huq E (2020). PCH1 and PCHL directly interact with PIF1, promote its degradation, and inhibit its transcriptional function during photomorphogenesis. Mol Plant 13, 499-514. |
[4] | Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, Templeton MD, Karunauretnam S, Gleave AP, Laing WA (2005). Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1, 13. |
[5] | Jiang ZM, Xu G, Jing YJ, Tang WJ, Lin RC (2016). Phytochrome B and REVEILLE1/2-mediated signaling controls seed dormancy and germination in Arabidopsis. Nat Commun 7, 12377. |
[6] | Jing YJ, Guo Q, Lin RC (2019). The chromatin-remodeling factor PICKLE antagonizes polycomb repression of FT to promote flowering. Plant Physiol 181, 656-668. |
[7] | Latchman DS (2005). Gene Regulation-A Eukaryotic Perspective, 5th edn. Oxford and New York: Taylor and Fran-cis. pp. 1. |
[8] | Li JJ, Herskowitz I (1993). Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system. Science 262, 1870-1874. |
[9] | Lin RC, Ding L, Casola C, Ripoll DR, Feschotte C, Wang HY (2007). Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318, 1302-1305. |
[10] | Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014). The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5, 170. |
[11] | Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K (2017). Transcriptional regulatory network of plant heat stress response. Trends Plant Sci 22, 53-65. |
[12] | Pu L, Brady S (2010). Systems biology update: cell type- specific transcriptional regulatory networks. Plant Physiol 152, 411-419. |
[13] | Wu FH, Shen SC, Lee LY, Lee SH, Chan MT, Lin CS (2009). Tape-Arabidopsis Sandwich-a simpler Arabidopsis protoplast isolation method. Plant Methods 5, 16. |
[14] | Xu G, Jiang ZM, Wang HY, Lin RC (2019). The central circadian clock proteins CCA1 and LHY regulate iron homeostasis in Arabidopsis. J Integr Plant Biol 61, 168-181. |
[15] | Yang LW, Jiang ZM, Liu SR, Lin RC (2020). REVEILLE1 inhibits RGL2 degradation to regulate seed dormancy and germination in Arabidopsis. New Phytol 225, 1593-1605. |
[16] | Yoo SD, Cho YH, Sheen J (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2, 1565-1572. |
/
〈 | 〉 |