特邀综述

植物类LORELEI糖基磷脂酰肌醇锚定蛋白研究进展

展开
  • 1东北林业大学生命科学学院, 东北盐碱植被恢复与重建教育部重点实验室, 哈尔滨 150040
    2上海师范大学生命科学学院, 上海植物种质资源工程技术研究中心, 上海 200234

收稿日期: 2020-04-05

  录用日期: 2020-05-20

  网络出版日期: 2020-05-20

基金资助

黑龙江省自然科学基金(JJ2019ZZ0235);上海市科委科研计划(17391900600)

Advances of LORELEI-like Glycosylphosphatidylinositol-anchor (LLG) Proteins in Plants

Expand
  • 1Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
    2Shanghai Plant Germplasm Resources Engineering Technology Research Center, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China

Received date: 2020-04-05

  Accepted date: 2020-05-20

  Online published: 2020-05-20

摘要

类LORELEI糖基磷脂酰肌醇锚定蛋白(LLG)定位于细胞质膜外表面, 作为CrRLK1L家族类受体激酶的分子伴侣, 参与其转运和胞外信号转导, 从而调控植物生殖发育以及免疫与逆境应答等过程。LLG2/3与ANX和BUPS互作, 调控花粉管顶端生长与爆裂。LLG1与FER (FERONIA)互作, 调控下游的NADPH氧化酶产生活性氧(ROS), 促进根部细胞伸长和根毛生长。此外, LLG1作为FER的共受体, 与快速碱化因子(RALFs)互作, 调节G蛋白β亚基(AGB1)和质膜H +-ATPase功能、胞内ROS稳态以及Ca 2+瞬变, 引起根部和气孔的盐应答反应。LLG1与FLS2和EFR互作激活下游RbohD, 调节ROS产生, 调控植物免疫应答。该文综述了植物LLG的相关研究进展, 可为深入理解LLG的生物学功能提供重要信息。

本文引用格式

李思佳, 张咏雪, 贾明生, 李莹, 戴绍军 . 植物类LORELEI糖基磷脂酰肌醇锚定蛋白研究进展[J]. 植物学报, 2020 , 55(5) : 541 -550 . DOI: 10.11983/CBB20058

Abstract

The outer surface of plasma membrane (PM)-localized LORELEI-like glycosylphosphatidylinositol-anchor (LLG) proteins, as the molecular chaperone of CrRLK1Ls family of receptor-like kinase, are involved in the transport of CrRLKs and extracellular signal transduction, regulating plant reproduction, development, as well as immune and stress responses. LLG2/3 interacting with ANX and BUPS regulates pollen tube growth and rupture. LLG1 interacted with FER activates the ROPGEF1-ROP2-NADPH oxidase pathway for ROS production, and then promotes root cell elongation and root hair growth. Besides, LLG1, as co-receptor of FER, interacts with RALFs, and then regulates G protein β (AGB1), PM H +-ATPase activity, as well as the homeostasis of intracellular ROS and Ca 2+, for modulating stomata and roots in response to salinity. For immune response, LLG1 interacts with FLS2 and EFR, activating the downstream RbohD for ROS production. This review provides important information for understanding LLG biological functions.

参考文献

[1] Chen J, Yu F, Liu Y, Du CQ, Li XS, Zhu SR, Wang XC, Lan WZ, Rodriguez PL, Liu XM, Li DP, Chen LB, Luan S ( 2016). FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsismodification. Proc Natl Acad Sci USA 113, E5519-E5527.
[2] Cheung AY, Li C, Zou YJ, Wu HM ( 2014). Glycosylphosphatidylinositol anchoring: control through modification. Plant Physiol 166, 748-750.
[3] Deslauriers SD, Larsen PB ( 2010). FERONIA is a key modulator of brassinosteroid and ethylene responsiveness in Arabidopsis hypocotyls. Mol Plant 3, 626-640.
[4] Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, Barron C, Brady SM, Schiefelbein J, Benfey PN ( 2008). Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320, 942-945.
[5] Duan QH, Kita D, Johnson EA, Aggarwal M, Gates L, Wu HM, Cheung AY ( 2014). Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat Commun 5, 3129.
[6] Duan QH, Kita D, Li C, Cheung AY, Wu HM ( 2010). FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc Natl Acad Sci USA 107, 17821-17826.
[7] Duan QH, Liu MCJ, Kita D, Jordan SS, Yeh FLJ, Yvon R, Carpenter H, Federico AN, Garcia-Valencia LE, Eyles SJ, Wang CS, Wu HM, Cheung AY ( 2020). FERONIA controls pectin- and nitric oxide-mediated male-female interaction. Nature 579, 561-566.
[8] Feng HQ, Liu C, Fu R, Zhang MM, Li H, Shen LP, Wei QQ, Sun X, Xu L, Ni B, Li C ( 2019). LORELEI-LIKE GPI- ANCHORED PROTEINS 2/3 regulate pollen tube growth as chaperones and coreceptors for ANXUR/BUPS receptor kinases in Arabidopsis. Mol Plant 12, 1612-1623.
[9] Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, Duan QH, Liu MC, Maman J, Steinhorst L, Schmitz- Thom I, Yvon R, Kudla J, Wu HM, Cheung AY, Dinneny JR ( 2018). The FERONIA receptor kinase maintains cell- wall integrity during salt stress through Ca 2+ signaling . Curr Biol 28, 666-675.
[10] Franck CM, Westermann J, Boisson-Dernier A ( 2018). Plant malectin-like receptor kinases: from cell wall integrity to immunity and beyond. Annu Rev Plant Biol 69, 301-328.
[11] Frye CA, Tang DZ, Innes RW ( 2001). Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci USA 98, 373-378.
[12] Ge ZX, Bergonci T, Zhao YL, Zou YJ, Du S, Liu MC, Luo XJ, Ruan H, García-Valencia LE, Zhong S, Hou SY, Huang QP, Lai LH, Moura DS, Gu HY, Dong J, Wu HM, Dresselhaus T, Xiao JY, Cheung AY, Qu LJ ( 2017). Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science 358, 1596-1600.
[13] Ge ZX, Cheung AY, Qu LJ ( 2019). Pollen tube integrity regulation in flowering plants: insights from molecular assemblies on the pollen tube surface. New Phytol 222, 687-693.
[14] Guo HQ, Li L, Ye HX, Yu XF, Algreen A, Yin YH ( 2009). Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. Proc Natl Acad Sci USA 106, 7648-7653.
[15] Haruta M, Monshausen G, Gilroy S, Sussman MR ( 2008). A cytoplasmic Ca 2+ functional assay for identifying and purifying endogenous cell signaling peptides in Arabidopsis seedlings: identification of AtRALF1 peptide. Biochemistry 47, 6311-6321.
[16] Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR ( 2014). A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343, 408-411.
[17] Hou YN, Guo XY, Cyprys P, Zhang Y, Bleckmann A, Cai L, Huang QP, Luo Y, Gu HY, Dresselhaus T, Dong J, Qu LJ ( 2016). Maternal ENODLs are required for pollen tube reception in Arabidopsis. Curr Biol 26, 2343-2350.
[18] Huang GQ, Li E, Ge FR, Li S, Wang Q, Zhang CQ, Zhang Y ( 2013). Arabidopsis RopGEF4 and RopGEF10 are important for FERONIA-mediated developmental but not environmental regulation of root hair growth. New Phytol 200, 1089-1101.
[19] Johnson MA, Harpe JF, Palanivelu R ( 2019). A fruitful journey: pollen tube navigation from germination to fertilization. Annu Rev Plant Biol 70, 809-837.
[20] José-Estanyol M, Gomis-Rüth FX, Puigdomènech P ( 2004). The eight-cysteine motif, a versatile structure in plant proteins. Plant Physiol Biochem 42, 355-365.
[21] Kaya H, Nakajima R, Iwano M, Kanaoka MM, Kimura S, Takeda S, Kawarazaki T, Senzaki E, Hamamura Y, Higashiyama T, Takayama S, Abe M, Kuchitsu K ( 2014). Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. Plant Cell 26, 1069-1080.
[22] Keinath NF, Kierszniowska S, Lorek J, Bourdais G, Kessler SA, Shimosato-Asano H, Grossniklaus U, Schulze WX, Robatzek S, Panstruga R ( 2010). PAMP (pathogen-associated molecular pattern)-induced changes in plasma membrane compartmentalization reveal novel components of plant immunity. J Biol Chem 285, 39140-39149.
[23] Li C, Yeh FL, Cheung AY, Duan QH, Kita D, Liu MC, Maman J, Luu EJ, Wu BW, Gates L, Jalal M, Kwong A, Carpenter H, Wu HM ( 2015). Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis. eLife 4, e06587.
[24] Li HJ, Yang WC ( 2016). RLKs orchestrate the signaling in plant male-female interaction. Sci China Life Sci 59, 867-877.
[25] Li HJ, Yang WC ( 2018). Ligands switch model for pollen- tube integrity and burst. Trends Plant Sci 23, 369-372.
[26] Li L, Li M, Yu LP, Zhou ZY, Liang XX, Liu ZX, Cai GH, Gao LY, Zhang XJ, Wang YC, Chen S, Zhou JM ( 2014). The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe 15, 329-338.
[27] Liu LF, Shangguan KK, Zhang BC, Liu XL, Yan MX, Zhang LJ, Shi YY, Zhang M, Qian Q, Li JY, Zhou YH ( 2013). Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils. PLoS Genet 9, e1003704.
[28] Liu XL, Castro C, Wang YB, Noble J, Ponvert N, Bundy M, Hoel C, Shpak E, Palanivelu R ( 2016). The role of LORELEI in pollen tube reception at the interface of the synergid cell and pollen tube requires the modified eight- cysteine motif and the receptor-like kinase FERONIA. Plant Cell 28, 1035-1052.
[29] Mangano S, Juárez SPD, Estevez JM ( 2016). ROS regulation of polar growth in plant cells. Plant Physiol 171, 1593-1605.
[30] Mecchia MA, Santos-Fernandez G, Duss NN, Somoza SC, Boisson-Dernier A, Gagliardini V, Martínez-Ber- nardini A, Fabrice TN, Ringli C, Muschietti JP, Gros- sniklaus U ( 2017). RALF4/19 peptides interact with LRX proteins to control pollen tube growth in Arabidopsis. Science 358, 1600-1603.
[31] Monshausen GB, Bibikova TN, Messerli MA, Shi C, Gilroy S ( 2007). Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs. Proc Natl Acad Sci USA 104, 20996-21001.
[32] Shen QJ, Bourdais G, Pan HR, Robatzek S, Tang DZ ( 2017). Arabidopsis glycosylphosphatidylinositol-anchored protein LLG1 associates with and modulates FLS2 to regulate innate immunity. Proc Natl Acad Sci USA 114, 5749-5754.
[33] Shi H, Shen QJ, Qi YP, Yan HJ, Nie HZ, Chen YF, Zhao T, Katagiri F, Tang DZ ( 2013). BR-SIGNALING KINASE 1 physically associates with FLAGELLIN SENSING 2 and regulates plant innate immunity in Arabidopsis. Plant Cell 25, 1143-1157.
[34] Sun YD, Li L, Macho AP, Han ZF, Hu ZH, Zipfel C, Zhou JM, Chai JJ ( 2013). Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 342, 624-628.
[35] Swanson S, Gilroy S ( 2010). ROS in plant development. Physiol Plant 138, 384-392.
[36] Xiao Y, Stegmann M, Han ZF, DeFalco TA, Parys K, Xu L, Belkhadir Y, Zipfel C, Chai JJ ( 2019). Mechanisms of RALF peptide perception by a heterotypic receptor complex. Nature 572, 270-274.
[37] Xu GY, Chen WJ, Song LM, Chen QS, Zhang H, Liao HD, Zhao GQ, Lin FC, Zhou HN, Yu F ( 2019). FERONIA phosphorylates E3 ubiquitin ligase ATL6 to modulate the stability of 14-3-3 proteins in response to the carbon/nitrogen ratio. J Exp Bot 70, 6375-6388.
[38] Yang T, Wang L, Li CY, Liu Y, Zhu SR, Qi YY, Liu XM, Lin QL, Luan S, Yu F ( 2015). Receptor protein kinase FERO-NIA controls leaf starch accumulation by interacting with glyceraldehyde-3-phosphate dehydrogenase. Biochem Biophys Res Commun 465, 77-82.
[39] Yang YQ, Qin YX, Xie CG, Zhao FY, Zhao JF, Liu DF, Chen SY, Fuglsang AT, Palmgren MG, Schumaker KS, Deng XW, Guo Y ( 2010). The Arabidopsis chaperone J3 regulates the plasma membrane H+-ATPase through interaction with the PKS5 kinase. Plant Cell 22, 1313-1332.
[40] Yeats TH, Sorek H, Wemmer DE, Somerville CR ( 2016). Cellulose deficiency is enhanced on hyper accumulation of sucrose by a H+-coupled sucrose symporter. Plant Physiol 171, 110-124.
[41] Yin YL, Qin KZ, Song XW, Zhang QH, Zhou YH, Xia XJ, Yu JQ ( 2018). BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinase- mediated reactive oxygen species signaling in tomato. Plant Cell Physiol 59, 2239-2254.
[42] Yu F, Qian LC, Nibau C, Duan QH, Kita D, Levasseur K, Li XQ, Lu CQ, Li H, Hou CC, Li LG, Buchanan BB, Chen LB, Cheung AY, Li DP, Luan S ( 2012). FERONIA receptor kinase pathway suppresses abscisic acid signaling in Arabidopsis by activating ABI2 phosphatase. Proc Natl Acad Sci USA 109, 14693-14698.
[43] Yu JJ, Li Y, Qin Z, Guo SY, Li YF, Miao YC, Song CP, Chen SX, Dai SJ ( 2020). Plant chloroplast stress response: insights from thiol redox proteomics. Antioxid Redox Signal 33, 35-57.
[44] Yu SC, Guo ZW, Johnson C, Gu GF, Wu QY ( 2013). Recent progress in synthetic and biological studies of GPI anchors and GPI-anchored proteins. Curr Opin Chem Biol 17, 1006-1013.
[45] Yu YQ, Assmann SM ( 2015). The heterotrimeric G-protein β subunit, AGB1, plays multiple roles in the Arabidopsis salinity response. Plant Cell Environ 38, 2143-2156.
[46] Yu YQ, Chakravorty D, Assmann SM ( 2018). The G protein β-subunit, AGB1, interacts with FERONIA in RALF1- regulated stomatal movement. Plant Physiol 176, 2426-2440.
[47] Zhang WT, Liu J, Zhang YX, Qiu J, Li Y, Zheng BJ, Hu FH, Dai SJ, Huang XH ( 2020). A high-quality genome sequence of alkaligrass provides insights into halophyte stress tolerance. Sci China Life Sci 63, 1269-1282.
[48] Zhao CZ, Zayed O, Yu ZP, Jiang W, Zhu PP, Hsu CC, Zhang LR, Tao WA, Lozano-Durán R, Zhu JK ( 2018). Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. Proc Natl Acad Sci USA 115, 13123-13128.
[49] Zhong S, Qu LJ ( 2019). Peptide/receptor-like kinase-mediated signaling involved in male-female interactions. Curr Opin Plant Biol 51, 7-14.
[50] Zurzolo C, Simons K ( 2016). Glycosylphosphatidylinositol-anchored proteins: membrane organization and transport. Biochim Biophys Acta 1858, 632-639.
文章导航

/