[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究报告

蕨类植物的鳞片特征及演化I: 凤尾蕨科

展开
  • 1 中国科学院上海辰山植物园, 上海辰山植物科学研究中心, 上海 201602
    2 哈尔滨师范大学, 黑龙江省普通高等学校植物生物学重点实验室, 哈尔滨 150025
    3 上海师范大学生命科学学院, 上海 200234

收稿日期: 2019-07-01

  录用日期: 2019-10-24

  网络出版日期: 2019-11-14

基金资助

国家自然科学基金(31800450);生态环境部生物多样性调查与评估(No.2019HJ2096001006);上海市绿化和市容管理局科技攻关(No.F112422)

Morphology Characters and Evolution of Ferns Scale Ι: Pteridaceae

Expand
  • 1 Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai 201602, China
    2 Key Laboratory of Plant Biology, College of Heilongjiang Province, Harbin Normal University, Harbin 150025, China
    3 College of Life Sciences, Shanghai Normal University, Shanghai 200234, China

Received date: 2019-07-01

  Accepted date: 2019-10-24

  Online published: 2019-11-14

摘要

鳞片是蕨类植物体表常见附属物, 是蕨类植物非常显著的分类学特征。凤尾蕨科(Pteridaceae)在蕨类植物系统发育中的位置关系多次发生了变化, 不同学者对该科中包含的类群也有着不同的观点。通过对该科76种植物的鳞片进行取材, 利用解剖镜观察拍照, 对各属鳞片特征进行描述。结果显示, 鳞片特征在不同的属和亚科之间具有明显的形态差异。用GenBank数据库中的rbcL基因序列对所研究物种进行系统发育重建, 并对鳞片的边缘特征和筛孔类型进行祖先性状重建, 结果表明, 全缘型鳞片和均质型鳞片是凤尾蕨科鳞片的祖征性状, 非全缘类型和透明筛孔类型的鳞片是在后期演化过程中形成的特征。此外, 透明和不透明类型的筛孔其形成可能与蕨类植物生活环境中的光照强度有关。

本文引用格式

顾钰峰,金冬梅,刘保东,戴锡玲,严岳鸿 . 蕨类植物的鳞片特征及演化I: 凤尾蕨科[J]. 植物学报, 2020 , 55(2) : 163 -176 . DOI: 10.11983/CBB19118

Abstract

Scales are epidermal appendages on the rhizomes and leaves of many ferns. Features of scales play an important role in classification of ferns. The phylogenetic position and delimitation of Pteridaceae were treated differently by different authors. Here we collected scales of 76 fern species in Pteridaceae, and observed them under a dissecting microscope. By comparing the morphological characters, we found that scales are different among genus and subfamilies. We reconstructed a phylogenetic tree with the plastid rbcL sequence of the species in this study downloaded from GenBank database and reconstruced the ancestral state for two selected characters (margin of the scale and mesh type). The results suggested that homogeneous scale and entire margin were plesiomorphic characters, while non-entire margin and transparent mesh were evolved late in evolutionary process. We also speculated that the formation of transparent or non-transparent mesh may relate to the light intensity in the habitats.

[an error occurred while processing this directive]

参考文献

[1] 顾钰峰 ( 2015). 蕨类植物鳞片形态的研究. 硕士论文. 上海: 上海师范大学. pp. 7.
[2] 顾钰峰, 韦宏金, 卫然, 戴锡玲, 严岳鸿 ( 2014). 中国双盖蕨属一新记录种——Diplazium×kidoi Sa. Kurata. 植物科学学报 32, 336-339.
[3] 柯勇男 ( 2002). 台湾产广义鳞毛蕨科之毛被物研究. 硕士论文. 高雄: 台湾中山大学. pp. 3.
[4] 刘红梅, 王丽, 张宪春, 曾辉 ( 2008). 石松类和蕨类植物研究进展: 兼论国产类群的科级分类系统. 植物分类学报 46, 808-829.
[5] 秦仁昌 ( 1978). 中国蕨类植物科属的系统排列和历史来源. 植物分类学报 16(3), 1-19.
[6] 邵文, 陆树刚, 商清春 ( 2011). 假瘤蕨属(水龙骨科)植物鳞片特征的分类学意义. 广西植物 31, 14-19.
[7] 石雷, 张宪春 ( 1999). 薄唇蕨属的分类研究. 植物分类学报 37, 145-152.
[8] 石雷, 张宪春 ( 2001). 线蕨种下分类和植物地理的研究. 植物研究 21, 360-364.
[9] 于顺利, 林尤兴 ( 1996). 中国产瓦韦属植物的分类学研究. 植物研究 16, 3-24.
[10] 张宪春 ( 2012). 中国石松类和蕨类植物. 北京: 北京大学出版社. pp. 23.
[11] 张宪春, 卫然, 刘红梅, 何丽娟, 王丽, 张钢民 ( 2013). 中国现代石松类和蕨类的系统发育与分类系统. 植物学报 48, 119-137.
[12] Foster AS, Gifford EM (李正理, 张新英, 李荣敖, 崔克明译)( 1983). 维管植物比较形态学. 北京: 科学出版社. pp. 226-312.
[13] Christenhusz MJM, Chase MW ( 2014). Trends and concepts in fern classification. Ann Bot 113, 571-594.
[14] Christenhusz MJM, Zhang XC, Schneider H ( 2011). A linear sequence of extant families and genera of lycophytes and ferns. Phytotaxa 19, 7-54.
[15] Greenfield SS ( 1938). A comparison of the basal scales and Indusia of Dryopteris Goldiana × marginalis with those of its parent species. Am Fern J 28, 55-62.
[16] Holttum ER ( 1957). The scales of Cyatheaceae (With special reference to the genus Schizocaena J.Sm.). Kew Bull 12, 41-45.
[17] Holttum RE ( 1949). The classification of ferns. Biol Rev 24, 267-296.
[18] Holttum RE ( 1963). Cyatheaceae. Flora malesiana—series 2. Pteridophyta 1, 65-176.
[19] Hoshizaki BJ ( 1970). The rhizome scales of Platycerium. Am Fern J 60, 144-160.
[20] Kuo LY, Li FW, Chiou WL, Wang CN ( 2011). First insights into fern matK phylogeny. Mol Phylogenet Evol 59, 556-566.
[21] Labiak PH ( 2003). A new combination in the fern genus Ceradenia(Grammitidaceae). Kew Bull 58, 991-994.
[22] Lehtonen S ( 2011). Towards resolving the complete fern tree of life. PLoS One 6, e24851.
[23] Maddison DR, Maddison WP ( 2018). Mesquite: a modular system for evolutionary analysis. Version 3.61.http://www. mesquiteproject.org .
[24] Nayar BK ( 1970). A phylogenetic classification of the homosporous ferns. Taxon 19, 229-236.
[25] PPG I ( 2016). A community-derived classification for extant lycophytes and ferns. J Syst Evol 54, 563-603.
[26] Pryer KM, Schuettpelz E, Wolf PG, Schneider H, Smith AR, Cranfill R ( 2004). Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences. Am J Bot 91, 1582-1598.
[27] Qi XP, Kuo LY, Guo CC, Li H, Li ZY, Qi J, Wang LB, Hu Y, Xiang JY, Zhang CF, Guo J, Huang CH, Ma H ( 2018). A well-resolved fern nuclear phylogeny reveals the evolution history of numerous transcription factor families. Mol Phylogenet Evol 127, 961-977.
[28] Rai HS, Graham SW ( 2010). Utility of a large, multigene plastid data set in inferring higher-order relationships in ferns and relatives (monilophytes). Am J Bot 97, 1444-1456.
[29] Schneider H ( 2013). Evolutionary morphology of ferns (monilophytes). In: Ambrose BA, Purugganan M, eds. Annual Plant Reviews, Vol. 45. The Evolution of Plant Form. Hoboken, New Jersey: John Wiley & Sons, Ltd. pp. 115-140.
[30] Schuettpelz E, Schneider H, Huiet L, Windham MD, Pryer KM ( 2007). A molecular phylogeny of the fern family Pteridaceae: assessing overall relationships and the affinities of previously unsampled genera. Mol Phylogenet Evol 44, 1172-1185.
[31] Sermolli REGP ( 1977). Tentamen Pteridophytorum genera in taxonomicum ordinem redigendi. Webbia 31, 313-512.
[32] Shen H, Jin DM, Shu JP, Zhou XL, Lei M, Wei R, Shang H, Wei HJ, Zhang R, Liu L, Gu YF, Zhang XC, Yan YH ( 2018). Large-scale phylogenomic analysis resolves a backbone phylogeny in ferns. Gigascience 7(2), 1-11.
[33] Smith AR, Pryer KM, Schuettpelz E, Korall P, Schneider H, Wolf PG ( 2006). A classification for extant ferns. Taxon 55, 705-731.
[34] Tryon RM, Tryon AF ( 1982). Ferns and Allied Plants. New York: Springer- Verlag. pp. 166-212.
[35] Tsutsumi C, Kato M ( 2008). Morphology and evolution of epiphytic Davalliaceae scales. Botany 86, 1393-1403.
[36] Tsutsumi C, Zhang XC, Kato M ( 2008). Molecular phylogeny of Davalliaceae and implications for generic classification. Syst Bot 33, 44-48.
[37] Van den Heede CJ, Viane RLL, Chase MW ( 2003). Phylogenetic analysis of Asplenium subgenus Ceterach (Pteridophyta: Aspleniaceae) based on plastid and nuclear ribosomal ITS DNA sequences. Am J Bot 90, 481-495.
[38] Watkins Jr JE, Kawahara AY, Leicht TA, Auld JR, Bicksler AJ, Kaiser K ( 2006). Fern laminar scales protect against photoinhibition from excess light. Am Fern J 96, 83-92.
[39] Wei R, Schneider H, Zhang XC ( 2013). Toward a new circumscription of the twinsorus-fern genus (Diplazium Athyriaceae): a molecular phylogeny with morphological implications and infrageneric taxonomy. Taxon 62, 441-457.
[40] Wolf PG, Robison TA, Johnson MG, Sundue MA, Testo WL, Rothfels CJ ( 2018). Target sequence capture of nuclear-encoded genes for phylogenetic analysis in ferns. Appl Plant Sci 6, e01148.
[41] Zhang GM, Liao WB, Ding MY, Lin YX, Wu ZH, Zhang XC, Dong SY, Prado J, Gilbert MG, Yatskievych G, Ranker TA, Hoope EA, Alverson ER, Metzgar JS, Funston AM, Masuyama S, Kato M ( 2013). Flora of China,Vol. 2-3. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press. pp. 169-256.
文章导航

/

[an error occurred while processing this directive]