植物蛋白质S-亚硝基化修饰的检测与分析
收稿日期: 2019-06-13
录用日期: 2019-06-20
网络出版日期: 2019-06-26
基金资助
国家自然科学基金(31830017);国家自然科学基金(31521001);中国科学院战略先导B项目(XDB27030207)
Detection and Analysis of Protein S-nitrosylation in Plants
Received date: 2019-06-13
Accepted date: 2019-06-20
Online published: 2019-06-26
S-亚硝基化是一种重要的蛋白质翻译后修饰方式, 是指一氧化氮(NO)基团共价连接至靶蛋白特定半胱氨酸残基的自由巯基, 从而形成S-亚硝基硫醇(SNO)的过程。S-亚硝基化修饰广泛存在于各有机体中, 通过改变蛋白质生化活性、稳定性、亚细胞定位以及蛋白质-蛋白质相互作用等机制而调控不同的生物学过程或信号通路。在蛋白质S-亚硝基化检测分析方法中, 最为广泛使用的是生物素转化法(biotin switch assay), 其基本原理是首先封闭未被修饰的自由巯基, 进而将被修饰的SNO基团特异地还原为自由巯基并使用生物素将其特异标记。被生物素标记的半胱氨酸残基(即被修饰位点)可进一步通过蛋白质免疫印迹和/或质谱等方法进行检测分析。该文详细描述了植物蛋白质样品的体内和体外生物素转化法的实验流程, 并对实验过程中的注意事项进行了讨论。
陈立超,詹妮,李彦莎,冯健,左建儒 . 植物蛋白质S-亚硝基化修饰的检测与分析[J]. 植物学报, 2019 , 54(4) : 497 -502 . DOI: 10.11983/CBB19108
S-nitrosylation is an important protein posttranslational modification, involved in covalently linking a nitric oxide (NO) molecule to the thiol group of a cysteine residue to generate S-nitrosothiols. S-nitrosylation regulates multiple biological processes by modulating protein activity, stability, subcellular localization and protein-protein interactions. The biotin-switch assay is one of the most-often used methods to detect and analyze protein S-nitrosylation. In principle, the free thiols in a target protein are first blocked, followed by reducing the S-nitrosothiols of the target protein to free thiols by ascorbate, which are subsequently labelled by biotin to form biotinylated proteins. The biotin-labelled sample was assayed by immunoblotting and mass spectrometry. Here, we present detailed experimental procedures for the in vitro and in vivo biotin-switch methods and give advice on key troubleshooting solutions.
Key words: nitric oxide; S-nitrosylation; biotin-switch assay; plants
[1] | Albertos P, Romero-Puertas MC, Tatematsu K, Mateos I, Sánchez-Vicente I, Nambara E, Lorenzo O ( 2015). S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth. Nat Commun 6, 8669. |
[2] | Chen R, Sun S, Wang C, Li Y, Liang Y, An F, Li C, Dong H, Yang X, Zhang J, Zuo J ( 2009). The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death. Cell Res 19, 1377. |
[3] | Cui B, Pan Q, Clarke D, Villarreal MO, Umbreen S, Yuan B, Shan W, Jiang J, Loake GJ ( 2018). S-nitrosylation of the zinc finger protein SRG1 regulates plant immunity. Nat Commun 9, 4226. |
[4] | Feng J, Chen L, Zuo J ( 2019). Protein S-nitrosylation in plants: current progresses and challenges. J Integr Plant Biol doi. org/10.1111/jipb.12780. |
[5] | Feng J, Wang C, Chen Q, Chen H, Ren B, Li X, Zuo J ( 2013). S-nitrosylation of phosphotransfer proteins represses cytokinin signaling. Nat Commun 4, 1529. |
[6] | He Y, Tang RH, Hao Y, Stevens RD, Cook CW, Ahn SM, Jing L, Yang Z, Chen L, Guo F, Fiorani F, Jackson RB, Crawford NM, Pei ZM ( 2004). Nitric oxide represses the Arabidopsis floral transition. Science 305, 1968-1971. |
[7] | Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS ( 2005). Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6, 150-166. |
[8] | Hess DT, Stamler JS ( 2012). Regulation by S-nitrosylation of protein post-translational modification. J Biol Chem 287, 4411-4418. |
[9] | Hu J, Huang X, Chen L, Sun X, Lu C, Zhang L, Wang Y, Zuo J ( 2015). Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis. Plant Physiol 167, 1731-1746. |
[10] | Hu J, Yang H, Mu J, Lu T, Peng J, Deng X, Kong Z, Bao S, Cao X, Zuo J ( 2017). Nitric oxide regulates protein methylation during stress responses in plants. Mol Cell 67, 702-710. |
[11] | Iglesias MJ, Terrile MC, Correa-Aragunde N, Colman SL, Izquierdo-álvarez A, Fiol DF, París R, Sánchez-López N, Marina A, Calderón Villalobos LIA, Estelle M, Lamattina L, Martínez-Ruiz A, Casalongué CA ( 2018). Regulation of SCFTIR1/AFBs E3 ligase assembly by S-nitrosylation of Arabidopsis SKP1-like1 impacts on auxin signaling. Redox Biol 18, 200-210. |
[12] | Jaffrey SR, Snyder SH ( 2001). The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 2001,pl1. |
[13] | Ling T, Bellin D, Vandelle E, Imanifard Z, Delledonne M ( 2017). Host-mediated S-nitrosylation disarms the bacterial effector HopAI1 to reestablish immunity. Plant Cell 29, 2871-2881. |
[14] | Lytvyn DI, Raynaud C, Yemets AI, Bergounioux C, Blume YB ( 2016). Involvement of inositol biosynthesis and nitric oxide in the mediation of UV-B induced oxidative stress. Front Plant Sci 7, 430. |
[15] | Pan QN, Geng CC, Li DD, Xu SW, Mao DD, Umbreen S, Loake GJ, Cui BM ( 2019). Nitrate reductase-mediated nitric oxide regulates the leaf shape in Arabidopsis by mediating the homeostasis of reactive oxygen species. Int J Mol Sci 20, 2235. |
[16] | París R, Vazquez MM, Graziano M, Terrile MC, Miller ND, Spalding EP, Otegui MS, Casalongué CA ( 2018). Distribution of endogenous NO regulates early gravitropic response and PIN2 localization in Arabidopsis roots. Front Plant Sci 9, 495. |
[17] | Seth D, Hess DT, Hausladen A, Wang L, Wang YJ, Stamler JS ( 2018). A multiplex enzymatic machinery for cellular protein S-nitrosylation. Mol Cell 69, 451-464. |
[18] | Seth P, Hsieh PN, Jamal S, Wang L, Gygi SP, Jain MK, Coller J, Stamler JS ( 2019). Regulation of microRNA machinery and development by interspecies S-nitrosylation. Cell 176, 1014-1025. |
[19] | Shekariesfahlan A, Lindermayr C ( 2018). Identification of NO-sensitive cysteine residues using cysteine mutants of recombinant proteins. In: Mengel A, Lindermayr C, eds. Nitric Oxide: Methods and Protocols. New York: Springer New York. pp. 183-203. |
[20] | Shi H, Liu W, Wei Y, Ye T ( 2017). Integration of auxin/ indole-3-acetic acid 17 and RGA-LIKE3 confers salt stress resistance through stabilization by nitric oxide in Arabidopsis. J Exp Bot 68, 1239-1249. |
[21] | Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X ( 2008). Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science 321, 952-956. |
[22] | Wang P, Zhu JK, Lang Z ( 2015). Nitric oxide suppresses the inhibitory effect of abscisic acid on seed germination by S-nitrosylation of SnRK2 proteins. Plant Signal Behav 10, e1031939. |
[23] | Willems P, Horne A, Van Parys T, Goormachtig S, De Smet I, Botzki A, Van Breusegem F, Gevaert K ( 2019). The Plant PTM Viewer, a central resource for exploring plant protein modifications. Plant J 99, 752-762. |
[24] | Xue Y, Liu Z, Gao X, Jin C, Wen L, Yao X, Ren J ( 2010). GPS-SNO: computational prediction of protein S-nitrosylation sites with a modified GPS algorithm. PLoS One 5, e11290. |
[25] | Yang H, Mu J, Chen L, Feng J, Hu J, Li L, Zhou JM, Zuo J ( 2015). S-nitrosylation positively regulates ascorbate peroxidase activity during plant stress responses. Plant Physiol 167, 1604. |
[26] | Zhan N, Wang C, Chen L, Yang H, Feng J, Gong X, Ren B, Wu R, Mu J, Li Y, Liu Z, Zhou Y, Peng J, Wang K, Huang X, Xiao S, Zuo J ( 2018). S-nitrosylation targets GSNO reductase for selective autophagy during hypoxia responses in plants. Mol Cell 71, 142-154. |
[27] | Zhang L, Shi X, Zhang Y, Wang J, Yang J, Ishida T, Jiang W, Han X, Kang J, Wang X, Pan L, Lv S, Cao B, Zhang Y, Wu J, Han H, Hu Z, Cui L, Sawa S, He J, Wang G ( 2019 a). CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in Arabidopsis thaliana. Plant Cell Environ 42, 1033-1044. |
[28] | Zhang ZW, Fu YF, Zhou YH, Wang CQ, Lan T, Chen GD, Zeng J, Chen YE, Yuan M, Yuan S, Hu JY ( 2019 b). Nitrogen and nitric oxide regulate Arabidopsis flowering differently. Plant Sci 284, 177-184. |
/
〈 |
|
〉 |