利用叶绿素荧光评估草原植物羊草缺磷缺氮状况
# 共同第一作者
收稿日期: 2016-10-21
录用日期: 2017-01-18
网络出版日期: 2017-05-27
基金资助
国家重点基础研究发展计划(No.2014CB138800)
Assessment of Phosphate and Nitrogen Deficiency in Sheepgrass by Chlorophyll Fluorescence Spectroscopy
# Co-first authors
Received date: 2016-10-21
Accepted date: 2017-01-18
Online published: 2017-05-27
羊草(Leymus chinensis)是北方草原的重要牧草。准确评估其营养状况, 对维护羊草草原的生产力具有重要意义。以羊草幼苗为材料, 利用能同时表征2个光系统光化学活性的叶绿素荧光检测技术, 对缺氮和缺磷处理下的叶片光化学活性进行分析。结果表明, 缺氮处理20天后羊草叶片叶绿素含量降低近50%。同期缺磷及缺氮处理对PSII功能的影响总体大于PSI。与对照相比, 缺氮叶片的Φ(II)和Φ(I)分别比对照降低了30.3%与38.5%; ETR(II)与ETR(I)分别降低30.8%和28.9%。缺磷处理组Φ(II)和ETR(II)的降低幅度约为缺氮的1/2。这些定量研究结果对及时有效地诊断和区分羊草植物氮磷缺乏状况具有重要的参考价值。
李玲玉, 杨浩萌, 任为波, 吴新宏, 黄芳 . 利用叶绿素荧光评估草原植物羊草缺磷缺氮状况[J]. 植物学报, 2017 , 52(3) : 271 -276 . DOI: 10.11983/CBB16203
Sheepgrass (Leymus chinensis) is a forage plant species dominant in the north steppes. Accurate assessment of nutritional status of L. chinensis is essential to rational management of the grassland. For accurate assessment, we characterized and compared the photochemical activity of PSII and PSI in L. chinensis under Pi and N deprivation by using chlorophyll fluorescence spectroscopy. The effect of N deficiency on L. chinensis seedlings was greater than Pi deprivation. After 20 days of N-deprivation, chlorophyll content decreased nearly 50%. The activity of PSII was more affected than was PSI on the basis of in situ steady chlorophyll fluorescence measurements and light responsive curves. As compared with control plants, N-deprivated plants showed reduced Φ(II) and Φ(I) by 30.3% and 38.5%, and ETR(II) and ETR(I) were reduced 30.8% and 28.9%. Under Pi deprivation, the decreased values of Φ(II) and ETR(II) were about 1/2 those detected in N-deprivated plants. These quantitative results of chlorophyll fluorescence analysis provide new insights into photochemical characteristics of L. chinensis under N- and Pi-deficiency and also a valuable approach for efficient assessment of the nutritional status of L. chinensis plants.
[1] | 白雪, 程军回, 郑淑霞, 詹书侠, 白永飞 (2014). 典型草原建群种羊草对氮磷添加的生理生态响应. 植物生态学报 38, 103-115. |
[2] | 常杰, 葛滢 (1995). 羊草群落主要营养元素吸收相关性分析. 植物学通报 12(专辑2), 136-141. |
[3] | 林郑和, 钟秋生, 陈常颂, 游小妹, 陈志辉 (2013). 缺氮条件下不同品种茶树叶片光合特性的变化. 茶叶科学 33, 500-504. |
[4] | 徐爱东, 邱念伟, 娄苑颖 (2010). 判断玉米幼苗缺氮程度的叶绿素荧光动力学指标. 植物营养与肥料学报 16, 498-503. |
[5] | Antal T, Mattila H, Hakala-Yatkin M, Tyystjärvi T, Tyystjärvi E (2010). Acclimation of photosynthesis to nitrogen deficiency in Phaseolus vulgaris. Planta 232, 887-898. |
[6] | Arnon DI (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Phy- siol 24, 1-15. |
[7] | Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland.Nature 431, 181-184. |
[8] | Berry J, Bjorkman O (1980). Photosynthetic response and adaptation to temperature in higher plants.Annu Rev Plant Physiol 31, 491-543. |
[9] | Chen SP, Bai YF, Zhang LX, Han XG (2005). Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China.Environ Exp Bot 53, 65-75. |
[10] | Foyer C, Spencer C (1986). The relationship between phosphate status and photosynthesis in leaves: effects on intracellular orthophosphate distribution, photosynthesis and assimilate partitioning.Planta 167, 369-375. |
[11] | Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China.New Phytol 168, 377-385. |
[12] | Hoagland DR, Arnon DI (1949). The water culture met- hod for growing plants without soil.California Agricultural Experiment Station, Circular 347, 4-32. |
[13] | Li LY, Yang HM, Ren WB, Liu B, Cheng DM, Wu XH, Gong JR, Peng LW, Huang F (2016). Physiological and biochemical characterization of Sheepgrass (Ley- mus chinensis) reveals insights into photosynthetic apparatus coping with low-phosphate stress condit- ions. J Plant Biol 59, 336-346. |
[14] | Liu ZP, Chen ZY, Pan J, Li X, Su M, Wang L, Li H, Liu G (2008). Phylogenetic relationships in Leymus(Poa- ceae: Triticeae) revealed by the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences. Mol Phylogenet Evol 46, 278-289. |
[15] | Niyogi KK (1999). Photoprotection revisited: genetic and molecular approaches.Annu Rev Plant Physiol Plant Mol Biol 50, 333-359. |
[16] | Seemann JR, Sharkey TD, Wang JL, Osmond CB (1987). Environmental effects on photosynthesis, nitrogen-use efficiency, and metabolite pools in leaves of sun and shade plants. Plant Physiol 84, 796-802. |
[17] | Wu P, Ma LG, Hou XL, Wang MY, Wu YR, Liu FY, Deng XW (2003). Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves.Plant Physiol 132, 1260-1271. |
[18] | Xu ZZ, Zhou GS, Li H (2004). Responses of chlorophyll fluorescence and nitrogen level of Leymus chinensis seedling to changes of soil moisture and temperature. J Environ Sci 16, 666-669. |
[19] | Zhang ZL, Liao H, Lucas WJ (2014). Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants.J Integr Plant Biol 56, 192-220. |
/
〈 | 〉 |