技术方法

火龙果果皮中可溶性膳食纤维的提取方法

展开
  • 鲁东大学生命科学学院/鲁东大学肿瘤免疫新技术研究中心, 烟台 264025

收稿日期: 2016-05-23

  录用日期: 2017-01-10

  网络出版日期: 2017-07-10

基金资助

山东省“泰山学者”建设工程专项(No.tshw20120718)

Extraction of Soluble Dietary Fibers from Pitaya Peel

Expand
  • School of Life Sciences, Ludong University/Research Center of New Technology for Tumor Immunology, Ludong University, Yantai 264025, China

Received date: 2016-05-23

  Accepted date: 2017-01-10

  Online published: 2017-07-10

摘要

火龙果(Hylocereus undulatus)果皮可以作为一种优良的膳食纤维来源, 且其膳食纤维具有良好的理化性能。为提高火龙果果皮的综合利用水平, 该研究以火龙果果皮为原料, 首先采用纤维素酶水解法对火龙果果皮中的可溶性膳食纤维进行提取, 然后采用单因素试验和响应面法优化酶提取工艺。结果表明, 纤维素酶法提取火龙果果皮中可溶性膳食纤维的优化工艺条件为: 纤维素酶浓度0.54%, 酶解温度50°C, pH5.2。在此条件下, 可溶性膳食纤维的提取率可达19.81%; 膳食纤维的持水力为31.25 g∙g-1, 溶胀性为29.11 mL∙g-1

本文引用格式

张桂春, 刘玉静, 李延敏, 牟萍, 曲明娟, 李清, 周菊华 . 火龙果果皮中可溶性膳食纤维的提取方法[J]. 植物学报, 2017 , 52(5) : 622 -630 . DOI: 10.11983/CBB16116

Abstract

Pitaya peel can be a good source for preparing dietary fibers, and such dietary fibers has excellent physicochemical properties. To stimulate the comprehensive utilization of pitaya, we optimized the extraction of soluble dietary fibers (SDF) from pitaya peel. The cellulase digestion method was used with single-factor experiments and the response surface method. The optimized extraction conditions were cellulase concentration of 0.54%, enzymolysis temperature at 50°C and solvent pH of 5.2. Under the optimal conditions, the extraction rate of SDF from pitaya peel was up to 19.81%, the water holding capacity was 31.25 g∙g-1 and the swelling capacity was 29.11 mL∙g-1.

参考文献

[1] 戴余军, 石会军, 李长春, 张俊, 王文丰, 成传普 (2014). 菠萝皮可溶性膳食纤维酶法提取工艺的研究. 食品工业 35(2), 58-61.
[2] 郭雪霞, 牟建楼, 王颉, 郭海枫 (2014). 纤维素酶法提取枣渣可溶性膳食纤维的工艺研究. 中国农业科技导报16(5), 154-159.
[3] 菅明霞, 张亚楠, 王雅英, 田惠桥 (2009). 葱卵细胞的分离. 植物学报 44, 345-350.
[4] 姜彬慧, 胡筱敏, 左小红, 赵余庆 (2004). 酶技术与中药现代化. 世界科学技术: 中医药现代化 6(2), 46-49.
[5] 姜竹茂, 陈新美, 缪静 (2001). 从豆渣中制取可溶性膳食纤维的研究. 中国粮油学报 16(3), 53-55.
[6] 李来好, 杨贤庆, 陈培基, 吴燕燕, 刁石强, 徐泽智 (2000). 麒麟菜高活性膳食纤维的提取与功能性试验. 湛江海洋大学学报 20(2), 28-33.
[7] 李莉, 张赛, 何强, 胡学斌 (2015). 响应面法在试验设计与优化中的应用. 实验室研究与探索 34(8), 41-45.
[8] 李淑娟, 詹亚光, 杨传平, 徐云刚 (2009). 基于响应面法的白蜡属花粉离体萌发培养基优化. 植物学报 44, 223-229.
[9] 梁彬霞, 赵文红, 白卫东, 钱敏, 李夏雷 (2011). 火龙果果皮色素提取工艺研究. 中国食品添加剂 (6), 103-108.
[10] 宋东亮, 沈君辉, 李来庚 (2008). 高等植物细胞壁中纤维素的合成. 植物生理学通讯 44, 791-796.
[11] 宋燕 (2013). 火龙果果皮中可溶性膳食纤维的提取. 食品与发酵工业 39, 209-212.
[12] 孙慧, 刘凌 (2007). 优化纤维素酶水解桃渣制备可溶性膳食纤维工艺条件的研究. 食品与发酵工业 33(11), 60-64.
[13] 魏建华, 宋艳茹 (2002). 植物纤维素合酶基因研究进展. 植物学通报 19, 641-649.
[14] 伍成厚, 李冬妹, 田惠桥 (2012). 五唇兰合子与原胚的分离. 植物学报 47, 286-291.
[15] 杨昌鹏, 陈智理, 王秀芳, 李晓明 (2007). 火龙果果皮中提取果胶的工艺研究. 保鲜与加工 7(6), 46-48.
[16] 杨昌鹏, 唐志远, 卢艺, 黄海波 (2010). 火龙果果皮红色素的提取分离研究. 安徽农业科学 38, 347-349, 496.
[17] 杨明, 胡文娥, 吴寿中 (2012). 微波辅助提取火龙果果皮中果胶工艺. 食品研究与开发 33(2), 55-58.
[18] 张弛 (2003). 六西格玛试验设计. 广州: 广东经济出版社. pp. 289-307.
[19] 郑健仙 (2001). 低能量食品. 北京: 中国轻工业出版社. pp. 12-18.
[20] Chambi H, Grosso C (2006). Edible films produced with gelatin and casein cross-linked with transglutaminase.Food Res Int 39, 458-466.
[21] Falguera V, Quintero JP, Jimènez A, Muñoz JA, Ibarz A (2011). Edible films and coatings: structures, active functions and trends in their use.Trends Food Sci Technol 22, 292-303.
[22] Haigler CH, Ivanova-Datcheva M, Hogan PS, Salnikov VV, Hwang S, Martin K, Delmer DP (2001). Carbon partitioning to cellulase synthesis.Plant Mol Biol 47, 29-51.
[23] Renaud M, Belgacem MN, Rinaudo M (2005). Rheological behaviour of polysaccharide aqueous solution.Polymer 46, 12348-12358.
[24] Saini JK, Patel AK, Adsul M, Singhania RR (2016). Cellul- ase adsorption on lignin: a roadblock for economic hydroly- sis of biomass.Renew Energy 98, 29-42.
[25] Saxena IM, Brown RM Jr (2000). Cellulase synthases and related enzymes.Curr Opin Plant Biol 3, 523-531.
[26] Zhong K, Wang Q (2010). Optimization of ultrasonic extraction of polysaccharides from dried longan pulp using response surface methodology.Carbohydr Polym 80, 19-25.
文章导航

/

674-3466/bottom_cn.htm"-->