专题论坛

水稻香味基因及其在育种中的应用研究进展

展开
  • 1信阳师范学院生命科学学院, 信阳 464000
    2信阳师范学院大别山农业生物资源保护与利用研究院, 信阳 464000
    3信阳市农业科学院, 信阳 464000
    4信阳学院理工学院, 信阳 464000

收稿日期: 2016-10-11

  录用日期: 2017-01-10

  网络出版日期: 2017-01-10

基金资助

国家自然科学基金(No.U1604110, No.31270727, No.U1404319, No.31600992)、河南省重点科技攻关项目(No.15210211 0100, No.152102110036)、河南省高等学校重点科研项目(No.15A180059, No.16B180006)、河南省重大科技专项(No.121100110200)、河南省成果转化项目(No.142201110038)、河南省科技惠民项目(No.162207310009)、河南省高校科技创新团队(No.14IRTSTHN012)、信阳师范学院高层次人才科研启动基金(No.0201430)、河南省高等学校大学生实践创新训练计划(No.201710477018Y)、信阳师范学院“南湖学者奖励计划”青年项目(No.2016056)和大别山农业生物研究院开放课题

Research Progress of Fragrance Gene and Its Application in Rice Breeding

Expand
  • 1College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
    2Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
    3Xinyang Academy of Agricultural Sciences, Xinyang 464000, China
    4School of Sciences and Technology, Xinyang University, Xinyang 464000, China

Received date: 2016-10-11

  Accepted date: 2017-01-10

  Online published: 2017-01-10

摘要

水稻(Oryza sativa)为世界上30多亿人口的主食, 是最重要的粮食作物之一。作为栽培水稻类型之一的香稻, 由于其稻米具有独特的香味, 在国内外市场上深受广大消费者的青睐。近年来, 随着水稻功能基因组和测序技术的快速发展, 针对水稻香味基因的研究取得了较大进展, 并开发了一系列的功能标记应用于香味基因筛选和品种培育。该文综述了水稻香味基因的遗传基础、基因功能及其调控、功能标记的开发及应用的新进展, 以期为香稻新品种培育提供借鉴与参考。

本文引用格式

彭波, 孙艳芳, 陈报阳, 孙瑞萌, 孔冬艳, 庞瑞华, 李先文, 宋晓华, 李慧龙, 李金涛, 周棋赢, 柳琳, 段斌, 宋世枝 . 水稻香味基因及其在育种中的应用研究进展[J]. 植物学报, 2017 , 52(6) : 797 -807 . DOI: 10.11983/CBB16197

Abstract

Rice is a staple food for more than 3 billion people in the world, and it is one of the most important food crops. As one of the types of cultivated rice, fragrant rice is favoured worldwide by consumers because of its agreeable scent. In recent years, with the rapid development of rice functional genomics and sequencing technology, great progress has been made in understanding the fragrant gene in rice, and a series of functional markers has been developed for screening the fragrant gene and breeding new rice varieties. This paper mainly reviews the progress in the genetic basis, gene function and regulation of the fragrant gene and the development and application of gene functional markers in rice. It provides useful references for the cultivation of new varieties of fragrant rice.

参考文献

[1] 白现广, 程在全, 蔺忠龙, 吕广磊, 黄兴奇 (2009). 云南地方香稻与非香稻遗传多样性比较. 安徽农业科学 37, 2404-2406.
[2] 杜雪树, 夏明元, 李进波, 万丙良, 查中萍, 戚华雄 (2009). 分子标记辅助选择选育香稻恢复系. 华中农业大学学报 28, 651-654.
[3] 黄庭旭, 江文清, 游晴如, 周仕全, 刘端华, 谢冬容, 邱慧明 (2006). 籼型香稻恢复系大粒香-15的选育与利用. 福建农业学报 21, 83-88.
[4] 江青山, 林纲, 赵德明, 李云武, 贺兵, 王峰 (2008). 香型优质不育系宜香1A的特征特性及利用. 中国稻米 (2), 35-37.
[5] 况浩池, 曾正明, 刘国民, 罗俊涛, 文韶山, 陈光珍, 杨扬 (2007). 优质、香型籼三系不育系泸香91A的特征特性和高产繁殖技术. 中国稻米 (4), 28-29.
[6] 黎舒佳, 高谨, 李家洋, 王永红 (2015). 独脚金内酯调控水稻分蘖的研究进展. 植物学报 50, 539-548.
[7] 刘光春, 陆贤军, 任光俊, 高方远, 李治华, 任明鑫, 唐军 (2008). 杂交香稻新组合川香优425的选育与栽培技术. 中国稻米 (2), 42-43.
[8] 刘化龙, 张宇, 邹德堂, 赵宏伟, 王敬国, 孙健 (2014). 香稻种质资源筛选及香味基因遗传研究. 作物杂志 (6), 21-26.
[9] 彭波, 庞瑞华, 孙艳芳, 耿乐萍, 宋晓华, 李慧龙, 周棋赢, 孔冬艳, 田夏雨, 宋世枝 (2016a). 香稻胚乳的垩白性状研究及扫描电镜观察. 南方农业学报 47, 1635-1641.
[10] 彭波, 孙艳芳, 李琪瑞, 李丹, 庞瑞华, 周棋赢, 宋晓华, 李慧龙, 宋世枝 (2016b). 水稻垩白性状的遗传研究进展. 信阳师范学院学报(自然科学版) 29, 304-312.
[11] 唐傲, 邵高能, 胡培松 (2009). 水稻香味基因的研究进展. 中国稻米 (4), 1-4.
[12] 王丰, 李金华, 柳武革, 廖亦龙, 朱满山, 刘振荣, 黄慧君, 黄德娟 (2008). 一种水稻香味基因功能标记的开发. 中国水稻科学 22, 347-352.
[13] 王军, 杨杰, 陈志德, 仲维功 (2008). 水稻香米基因标记的开发与应用. 分子植物育种 6, 1209-1212.
[14] 徐辰武, 莫惠栋 (1995). 胚乳性状的质量-数量分析. 江苏农学院学报 16, 9-13.
[15] 徐小龙, 赵国超, 李建粤 (2011). 24种香稻品种甜菜碱醛脱氢酶2基因突变位点的分析及分子标记开发. 植物分类与资源学报 33, 667-673.
[16] 许言福, 黄菊, 王英存, 王杰, 李建粤 (2015). 两种筛选水稻badh2-E2类型香味基因分子标记的建立. 分子植物育种 13, 2441-2445.
[17] 闫影, 诸光明, 张丽霞, 万常照, 曹黎明, 赵志鹏, 吴书俊 (2015). 水稻香味基因分子标记的开发及应用. 西北植物学报 35, 269-274.
[18] 张江丽, 李苏洁, 李娟, 普世皇, 普玉姣, 张亮, 谭亚玲, 陈丽娟, 谭学林, 金寿林, 文建成 (2015). 不同来源水稻种质资源香味基因badh2位点的鉴定. 分子植物育种 13, 727-733.
[19] 张涛, 张红宇, 蒋开锋, 徐培州, 汪旭东, 吴先军, 郑家奎 (2008). 水稻香味基因的精细定位. 分子植物育种 6, 1038-1044.
[20] 赵志鹏, 李刚, 吴书俊, 陆家安 (2009). 香稻研究进展. 上海农业学报 25(2), 110-114.
[21] Ahn SN, Bollich CN, Tanksley SD (1992). RFLP tagging of a gene for aroma in rice.Theor Appl Genet 84, 825-828.
[22] Amarawathi Y, Singh R, Singh AK, Singh VP, Mohapatra T, Sharma TR, Singh NK (2008). Mapping of quantitative trait loci for basmati quality traits in rice ( Oryza sativa L.). Mol Breed 21, 49-65.
[23] Arikit S, Yoshihashi T, Wanchana S, Uyen TT, Huong NTT, Wongpornchai S, Vanavichit A (2011). Deficiency in the amino aldehyde dehydrogenase encoded byGm- AMADH2, the homologue of rice Os2AP, enhances 2- acetyl-1-pyrroline biosynthesis in soybeans(Glycine max L.). Plant Biotechnol J 9, 75-87.
[24] Birla DS, Malik K, Sainger M, Chaudhary D, Jaiwal R, Jaiwal PK (2017). Progress and challenges in improving the nutritional quality of rice ( Oryza sativa L.). Crit Rev Food Sci Nutr 57, 2455-2481.
[25] Bradbury LMT, Fitzgerald TL, Henry RJ, Jin QS, Waters DLE (2005a). The gene for fragrance in rice.Plant Biotechnol J 3, 363-370.
[26] Bradbury LMT, Gillies SA, Brushett DJ, Waters DLE, Henry RJ (2008). Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice.Plant Mol Biol 68, 439-449.
[27] Bradbury LMT, Henry RJ, Jin QS, Reinke RF, Waters DLE (2005b). A perfect marker for fragrance genotyping in rice.Mol Breed 16, 279-283.
[28] Chen ML, Wei XJ, Shao GN, Tang SQ, Luo J, Hu PS (2012). Fragrance of the rice grain achieved via artificial microRNA-induced down-regulation of OsBADH2. Plant Breed 131, 584-590.
[29] Chen SH, Wu J, Yang Y, Shi WW, Xu ML (2006). The fgr gene responsible for rice fragrance was restricted within 69 kb. Plant Sci 171, 505-514.
[30] Chen SH, Yang Y, Shi WW, Ji Q, He F, Zhang ZD, Cheng ZK, Liu XN, Xu ML (2008). Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-ace- tyl-1-pyrroline, a major component in rice fragrance. Plant Cell 20, 1850-1861.
[31] Cordeiro GM, Christopher MJ, Henry RJ, Reinke RF (2002). Identification of microsatellite markers for fragr- ance in rice by analysis of the rice genome sequence.Mol Breed 9, 245-250.
[32] Daygon VD, Prakash S, Calingacion M, Riedel A, Ovenden B, Snell P, Mitchell J, Fitzgerald M (2016). Understanding the jasmine phenotype of rice through metabolite profiling and sensory evaluation.Metabolomics 12, 63.
[33] Dong YJ, Tsuzuki E, Terao H, Yosimura A, Yasui H (2001a). Inheritance of aroma and identification of RELP markers linked to aroma genes in two rice cultivars ( Oryza sativa L.). Bull Fac Agric 48, 59-65.
[34] Dong YJ, Tsuzuki E, Terao H (2001b). Trisomic genetic analysis of aroma in three Japanese native rice varieties ( Oryza sativa L.). Euphytica 117, 191-196.
[35] Fitzgerald MA, Sackville Hamilton NR, Calingacion MN, Verhoeven HA, Butardo VM (2008). Is there a second fragrance gene in rice?Plant Biotechnol J 6, 416-423.
[36] Fu HY, Kim SY, Park WD (1995). High-level tuber expression and sucrose inducibility of a potato Sus4 sucrose syn- thase gene require 5' and 3' flanking sequences and the leader intron.Plant Cell 7, 1387-1394.
[37] Garland S, Lewin L, Blakeney A, Reinke R, Henry R (2000). PCR-based molecular markers for the fragrance gene in rice ( Oryza sativa L.). Theor Appl Genet 101, 364-371.
[38] Goufo P, Falco V, Brites C, Wessel DF, Kratz S, Rosa EAS, Carranca C, Trindade H (2014). Effect of elevated carbon dioxide concentration on rice quality: nutritive val- ue, color, milling, cooking, and eating qualities.Cereal Chem J 91, 513-521.
[39] Halford NG, Curtis TY, Chen ZW, Huang JH (2014). Effects of abiotic stress and crop management on cereal grain composition: implications for food quality and safety.J Exp Bot 66, 1145-1156.
[40] Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L, Voytas DF, Zhang F (2014). Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12, 934-940.
[41] He Q, Park YJ (2015). Discovery of a novel fragrant allele and development of functional markers for fragrance in rice.Mol Breed 35, 217.
[42] He Q, Yu J, Kim TS, Cho YH, Lee YS, Park YJ (2015). Resequencing reveals different domestication rate for BA- DH1 and BADH2 in rice(Oryza sativa). PLoS One 10, e0134801.
[43] Jeon JS, Lee S, Jung KH, Jun SH, Kim C, An G (2000). Tissue-preferential expression of a rice α-tubulin gene, Os- TubA1, mediated by the first intron. Plant Physiol 12, 1005-1014.
[44] Jin QS, Qin BQ, Yan WC, Luo RB (1995). Tagging of a gene for aroma in rice by RAPD and RFLP(I).Acta Agric Zhejiangensis 7, 439-442.
[45] Jin QS, Qin BQ, Yan WC, Luo RB (1996). Tagging of a gene for aroma in rice by RAPD and RFLP(II).Acta Agric Zhe- jiangensis 8, 19-23.
[46] Jin QS, Waters D, Cordeiro GM, Henry RJ, Reinke RF (2003). A single nucleotide polymorphism (SNP) marker linked to the fragrance gene in rice ( Oryza sativa L.). Plant Sci 165, 359-364.
[47] Juwattanasomran R, Somta P, Chankaew S, Shimizu T, Wongpornchai S, Kaga A, Srinives P (2011). A SNP in GmBADH2 gene associates with fragrance in vegetable soybean variety ‘Kaori’ and SNAP marker development for the fragrance. Theor Appl Genet 122, 533-541.
[48] Juwattanasomran R, Somta P, Kaga A, Chankaew S, Shimizu T, Sorajjapinun W, Srinives P (2012). Identification of a new fragrance allele in soybean and development of its functional marker.Mol Breed 29, 13-21.
[49] Kovach MJ, Calingacion MN, Fitzgerald MA, McCouch SR (2009). The origin and evolution of fragrance in rice ( Oryza sativa L.). Proc Natl Acad Sci USA 106, 14444-14449.
[50] Kusano M, Yang ZG, Okazaki Y, Nakabayashi R, Fukushima A, Saito K (2015). Using metabolomic approaches to explore chemical diversity in rice.Mol Plant 8, 58-67.
[51] Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012). High-efficiency TALEN-based gene editing produces disease-resistant rice.Nat Biotechnol 30, 390-392.
[52] Liang Z, Zhang K, Chen KL, Gao CX (2014). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/ Cas system. J Genet Genom 41, 63-68.
[53] Lorieux M, Petrov M, Huang N, Guiderdoni E, Ghesquière A (1996). Aroma in rice: genetic analysis of a quantitative trait.Theor Appl Genet 93, 1145-1151.
[54] Mahattanatawee K, Rouseff RL (2014). Comparison of aroma active and sulfur volatiles in three fragrant rice cultivars using GC-Olfactometry and GC-PFPD.Food Chem 154, 1-6.
[55] Mathure SV, Jawali N, Thengane RJ, Nadaf AB (2014). Comparative quantitative analysis of headspace volatiles and their association with BADH2 marker in non-basmati scented, basmati and non-scented rice(Oryza sativa L.) cultivars of India. Food Chem 142, 383-391.
[56] Murty DS, Nicodemus KD, House LR (1982). Inheritance of basmati and dimpled seed in sorghum.Crop Sci 22, 1080-1082.
[57] Myint KM, Arikit S, Wanchana S, Yoshihashi T, Choo- wongkomon K, Vanavichit A (2012). A PCR-based mar- ker for a locus conferring the aroma in Myanmar rice ( Oryza sativa L.). Theor Appl Genet 125, 887-896.
[58] Niu XL, Tang W, Huang WZ, Ren GJ, Wang QL, Luo D, Xiao YY, Yang SM, Wang F, Lu BR, Gao FY, Lu TG, Liu YS (2008). RNAi-directed downregulation of OsBADH2 results in aroma (2-acetyl-1-pyrroline) production in rice(Ory- za sativa L.). BMC Plant Biol 8, 100.
[59] Ootsuka K, Takahashi I, Tanaka K, Itani T, Tabuchi H, Yoshihashi T, Tonouchi A, Ishikawa R (2014). Genetic polymorphisms in Japanese fragrant landraces and novel fragrant allele domesticated in northern Japan.Breed Sci 64, 115-124.
[60] Paule CM, Powers JJ (1989). Sensory and chemical examination of aromatic and nonaromatic rices.J Food Sci 54, 343-346.
[61] Peng B, Kong HL, Li YB, Wang LQ, Zhong M, Sun L, Gao GJ, Zhang QL, Luo LJ, Wang GW, Xie WB, Chen JX, Yao W, Peng Y, Lei L, Lian XM, Xiao JH, Xu CG, Li XH, He YQ (2014a).OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice. Nat Commun 5, 4847.
[62] Peng B, Wang LQ, Fan CC, Jiang GH, Luo LJ, Li YB, He YQ (2014b). Comparative mapping of chalkiness components in rice using five populations across two environments.BMC Genet 15, 49.
[63] Prathepha P (2009). The fragrance ( >fgr) gene in natural populations of wild rice(Oryza rufipogon Griff.). Genet Re- sour Crop Evol 56, 13-18.
[64] Schieberle P (1990). The role of free amino acids present in yeast as precursors of the odorants 2-acetyl-1-pyrroline and 2-acetyltetrahydropyridine in wheat bread crust.Z Le- bensm Unters Forsch 191, 206-209.
[65] Shan QW, Wang YP, Chen KL, Liang Z, Li J, Zhang Y, Zhang K, Liu JX, Voytas DF, Zheng XL, Zhang Y, Gao CX (2013). Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol Plant 6, 1365-1368.
[66] Shan QW, Zhang Y, Chen KL, Zhang K, Gao CX (2015). Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol J 13, 791-800.
[67] Shao GN, Tang A, Tang SQ, Luo J, Jiao GA, Wu JL, Hu PS (2011). A new deletion mutation of fragrant gene and the development of three molecular markers for fragrance in rice.Plant Breed 130, 172-176.
[68] Shao GN, Tang SQ, Chen ML, Wei XJ, He JW, Luo J, Jiao GA, Hu YC, Xie LH, Hu PS (2013). Haplotype variation at Badh2, the gene determining fragrance in rice. Genomics 101, 157-162.
[69] Shi WW, Yang Y, Chen SH, Xu ML (2008). Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties.Mol Bre- ed 22, 185-192.
[70] Shi YQ, Zhao GC, Xu XL, Li JY (2014). Discovery of a new fragrance allele and development of functional markers for identifying diverse fragrant genotypes in rice.Mol Breed 33, 701-708.
[71] Stocker BD, Roth R, Joos F, Spahni R, Steinacher M, Zaehle S, Bouwman L, Ri X, Prentice IC (2013). Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios.Nat Clim Change 3, 666-672.
[72] Tian ZX, Qian Q, Liu QQ, Yan MX, Liu XF, Yan CJ, Liu GF, Gao ZY, Tang SZ, Zeng DL, Wang YH, Yu JM, Gu MH, Li JY (2009). Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities.Proc Natl Acad Sci USA 106, 21760-21765.
[73] Trossat C, Rathinasabapathi B, Hanson AD (1997). Trans- genically expressed betaine aldehyde dehydrogenase efficiently catalyzes oxidation of dimethylsulfoniopropionaldehyde and ω-aminoaldehydes.Plant Physiol 113, 1457-1461.
[74] Tsuzuki E, Shimokawa E (1990). Inheritance of aroma in rice.Euphytica 46, 157-159.
[75] Voytas DF, Gao CX (2014). Precision genome engineering and agriculture: opportunities and regulatory challenges.PLoS Biol 12, e1001877.
[76] Wanchana S, Kamolsukyunyong W, Ruengphayak S, Toojinda T, Tragoonrung S, Vanavichit A (2005). A rapid construction of a physical contig across a 4.5 cM region for rice grain aroma facilitates marker enrichment for positional cloning.Sci Asia 31, 299-306.
[77] Wang YP, Cheng X, Shan QW, Zhang Y, Liu JX, Gao CX, Qiu JL (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew.Nat Biotechnol 32, 947-951.
[78] Wendt T, Holm P, Starker C, Christian M, Voytas D, Brinch-Pedersen H, Holme IB (2013). TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants.Plant Mol Biol 83, 279-285.
[79] Yoshihashi T, Huong NTT, Inatomi H (2002). Precursors of 2-acetyl-1-pyrroline, a potent flavor compound of an aromatic rice variety.J Agric Food Chem 50, 2001-2004.
[80] Yundaeng C, Somta P, Tangphatsornruang S, Wongpornchai S, Srinives P (2013). Gene discovery and functional marker development for fragrance in sorghum (Sor- ghum bicolor(L.) Moench). Theor Appl Genet 126, 2897-2906.
[81] Zhao XQ, Fitzgerald M (2013). Climate change: implications for the yield of edible rice.PLoS One 8, e66218.
文章导航

/

674-3466/bottom_cn.htm"-->