水稻产量相关性状驯化研究进展
# 共同第一作者
收稿日期: 2016-07-10
录用日期: 2016-11-16
网络出版日期: 2017-01-23
基金资助
河北省教育厅自然科学研究项目(No;QN2015254, No;QN2015190)
Major Domestication Traits of Yield in Rice
# Co-first authors
Received date: 2016-07-10
Accepted date: 2016-11-16
Online published: 2017-01-23
水稻具有悠久的栽培历史, 是重要的粮食作物, 养育了1/3的世界人口。现代栽培稻(Oryza sativa)由野生稻(O. rufipogon)驯化而来, 产量是驯化筛选的关键性状之一。株型、穗型和种子大小是决定水稻产量的重要性状, 这些性状在水稻栽培过程中均受到了定向筛选。该文以水稻产量性状为核心, 综述了株型、穗型和种子大小等性状的驯化分子机理研究进展, 讨论了水稻产量驯化研究中存在的问题, 展望了驯化性状和相关基因的研究前景, 以期为水稻产量相关性状的驯化机理研究和水稻育种工作提供有价值的线索。
刘玉良, 郑术芝 . 水稻产量相关性状驯化研究进展[J]. 植物学报, 2017 , 52(1) : 113 -121 . DOI: 10.11983/CBB16148
Rice (Oryza sativa), cultivatedin one-third of the world, is one of the most important crops with a long culture history. Cultivated rice is domesticated from wild rice (O. rufipogon). Rice yield is an important domesticated phenotype. Rice yield is controlled by three morphologic features, including tiller characteristics, panicle structure and seed size. These phenotypes were selected from the wild type during domestication and increased yield. In this review, we summarize the molecular mechanism of yield domestication and discuss problems and prospects of rice culture to provide new insights for rice domestication and molecular breeding.
[1] | Asano K, Yamasaki M, Takuno S, Miura K, Katagiri S, Ito T, Doi K, Wu J, Ebana K, Matsumoto T, Innan H, Kitano H, Ashikari M, Matsuoka M (2011). Artificial selection for a green revolution gene during japonica rice domestication. Proc Natl Acad Sci USA 108, 11034-11039. |
[2] | Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005). Cytokinin oxidase regulates rice grain produc- tion. Science 309, 741-745. |
[3] | Callaway E (2014). Domestication: the birth of rice. Nature 514, S58-S59. |
[4] | Civan P, Craig H, Cox CJ, Brown TA (2015). Three geogra- phically separate domestications of Asian rice. Nat Plants 1, 15164. |
[5] | Doebley JF, Gaut BS, Smith BD (2006). The molecular genetics of crop domestication. Cell 127, 1309-1321. |
[6] | Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004). Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18, 926-936. |
[7] | Elbaum R, Zaltzman L, Burgert I, Fratzl P (2007). The role of wheat awns in the seed dispersal unit. Science 316, 884-886. |
[8] | Fan C, Yu S, Wang C, Xing Y (2009). A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. Theor Appl Genet 118, 465-472. |
[9] | Gross BL, Zhao Z (2014). Archaeological and genetic insights into the origins of domesticated rice. Proc Natl Acad Sci USA 111, 6190-6197. |
[10] | Gu B, Zhou T, Luo J, Liu H, Wang Y, Shangguan Y, Zhu J, Li Y, Sang T, Wang Z, Han B (2015). An-2 encodes a cytokinin synthesis enzyme that regulates awn length and grain production in rice. Mol Plant 8, 1635-1650. |
[11] | He Z, Zhai W, Wen H, Tang T, Wang Y, Lu X, Greenberg AJ, Hudson RR, Wu CI, Shi S (2011). Two evolutionary histories in the genome of rice: the roles of domestication genes. PLoS Genet 7, e1002100. |
[12] | Hirano HY, Eiguchi M, Sano Y (1998). A single base change altered the regulation of the Waxy gene at the post- transcriptional level during the domestication of rice. Mol Biol Evol 15, 978-987. |
[13] | Hua L, Wang DR, Tan L, Fu Y, Liu F, Xiao L, Zhu Z, Fu Q, Sun X, Gu P, Cai H, McCouch SR, Sun C (2015). LABA1, a domestication gene associated with long, barbed awns in wild rice. Plant Cell 27, 1875-1888. |
[14] | Huang X, Han B (2015). Rice domestication occurred thr- ough single origin and multiple introgressions. Nat Plants 2, 15207. |
[15] | Huang X, Kurata N, Wei X, Wang ZX, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, Guo Y, Lu Y, Zhou C, Fan D, Weng Q, Zhu C, Huang T, Zhang L, Wang Y, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan X, Xu Q, Dong G, Zhan Q, Li C, Fujiyama A, Toyoda A, Lu T, Feng Q, Qian Q, Li J, Han B (2012). A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497-501. |
[16] | Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009). Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41, 494-497. |
[17] | Hung HY, Shannon LM, Tian F, Bradbury PJ, Chen C, Flint-Garcia SA, McMullen MD, Ware D, Buckler ES, Doebley JF, Holland JB (2012). ZmCCT and the genetic basis of day-length adaptation underlying the postdome- stication spread of maize. Proc Natl Acad Sci USA 109, E1913-E1921. |
[18] | Ishii T, Numaguchi K, Miura K, Yoshida K, Thanh PT, Htun TM, Yamasaki M, Komeda N, Matsumoto T, Terauchi R, Ishikawa R, Ashikari M (2013). OsLG1 regulates a closed panicle trait in domesticated rice. Nat Genet 45, 462-465. |
[19] | Jiang J, Tan L, Zhu Z, Fu Y, Liu F, Cai H, Sun C (2012). Molecular evolution of the TAC1 gene from rice (Oryza sativa L.). J Genet Genomics 39, 551-560. |
[20] | Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J (2010). Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42, 541-544. |
[21] | Jin J, Huang W, Gao JP, Yang J, Shi M, Zhu MZ, Luo D, Lin HX (2008). Genetic control of rice plant architecture under domestication. Nat Genet 40, 1365-1369. |
[22] | Khush GS (1997). Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35, 25-34. |
[23] | Konishi S, Ebana K, Izawa T (2008). Inference of the japonica rice domestication process from the distribution of six functional nucleotide polymorphisms of domestication- related genes in various landraces and modern cultivars. Plant Cell Physiol 49, 1283-1293. |
[24] | Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M (2006). An SNP caused loss of seed shattering during rice domestication. Science 312, 1392-1396. |
[25] | Kovach MJ, Sweeney MT, McCouch SR (2007). New insights into the history of rice domestication. Trends Genet 23, 578-587. |
[26] | Li C, Zhou A, Sang T (2006). Rice domestication by reduc- ing shattering. Science 311, 1936-1939. |
[27] | Li P, Wang Y, Qian Q, Fu Z, Wang M, Zeng D, Li B, Wang X, Li J (2007). LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res 17, 402-410. |
[28] | Li S, Li W, Huang B, Cao X, Zhou X, Ye S, Li C, Gao F, Zou T, Xie K, Ren Y, Ai P, Tang Y, Li X, Deng Q, Wang S, Zheng A, Zhu J, Liu H, Wang L, Li P (2013). Natural variation in PTB1 regulates rice seed setting rate by controlling pollen tube growth. Nat Commun 4, 2793. |
[29] | Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J (2003). Control of tillering in rice. Nature 422, 618-621. |
[30] | Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q (2011). Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43, 1266-1269. |
[31] | Lin Z, Li X, Shannon LM, Yeh CT, Wang ML, Bai G, Peng Z, Li J, Trick HN, Clemente TE, Doebley J, Schnable PS, Tuinstra MR, Tesso TT, White F, Yu J (2012). Parallel domestication of the Shattering1 genes in cereals. Nat Genet 44, 720-724. |
[32] | Londo JP, Chiang YC, Hung KH, Chiang TY, Schaal BA (2006). Phylogeography of Asian wild rice, Oryza rufipo- gon, reveals multiple independent domestications of cul- tivated rice, Oryza sativa. Proc Natl Acad Sci USA 103, 9578-9583. |
[33] | Lu L, Shao D, Qiu X, Sun L, Yan W, Zhou X, Yang L, He Y, Yu S, Xing Y (2013). Natural variation and artificial selec- tion in four genes determine grain shape in rice. New Phytol 200, 1269-1280. |
[34] | Luo A, Qian Q, Yin H, Liu X, Yin C, Lan Y, Tang J, Tang Z, Cao S, Wang X, Xia K, Fu X, Luo D, Chu C (2006). EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice. Plant Cell Physiol 47, 181-191. |
[35] | Luo J, Liu H, Zhou T, Gu B, Huang X, Shangguan Y, Zhu J, Li Y, Zhao Y, Wang Y, Zhao Q, Wang A, Wang Z, Sang T, Wang Z, Han B (2013). An-1 encodes a basic helix-loop- helix protein that regulates awn development, grain size, and grain number in rice. Plant Cell 25, 3360-3376. |
[36] | Meyer RS, Purugganan MD (2013). Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet 14, 840-852. |
[37] | Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M (2010). OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet 42, 545-549. |
[38] | Molina J, Sikora M, Garud N, Flowers JM, Rubinstein S, Reynolds A, Huang P, Jackson S, Schaal BA, Busta- mante CD, Boyko AR, Purugganan MD (2011). Mole- cular evidence for a single evolutionary origin of domesti- cated rice. Proc Natl Acad Sci USA 108, 8351-8356. |
[39] | Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008). Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40, 1023-1028. |
[40] | Si W, Yuan Y, Huang J, Zhang X, Zhang Y, Zhang Y, Tian D, Wang C, Yang Y, Yang S (2015). Widely distributed hot and cold spots in meiotic recombination as shown by the sequencing of rice F2 plants. New Phytol 206, 1491-1502. |
[41] | Sosso D, Luo D, Li QB, Sasse J, Yang J, Gendrot G, Suzuki M, Koch KE, McCarty DR, Chourey PS, Rogowsky PM, Ross-Ibarra J, Yang B, Frommer WB (2015). Seed filling in domesticated maize and rice de- pends on SWEET-mediated hexose transport. Nat Genet 47, 1489-1493. |
[42] | Sugimoto K, Takeuchi Y, Ebana K, Miyao A, Hirochika H, Hara N, Ishiyama K, Kobayashi M, Ban Y, Hattori T, Yano M (2010). Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proc Natl Acad Sci USA 107, 5792-5797. |
[43] | Sun H, Qian Q, Wu K, Luo J, Wang S, Zhang C, Ma Y, Liu Q, Huang X, Yuan Q, Han R, Zhao M, Dong G, Guo L, Zhu X, Gou Z, Wang W, Wu Y, Lin H, Fu X (2014). Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat Genet 46, 652-656. |
[44] | Sun L, Li X, Fu Y, Zhu Z, Tan L, Liu F, Sun X, Sun X, Sun C (2013). GS6, a member of the GRAS gene family, nega- tively regulates grain size in rice. J Integr Plant Biol 55, 938-949. |
[45] | Sweeney M, McCouch S (2007). The complex history of the domestication of rice. Ann Bot 100, 951-957. |
[46] | Sweeney MT, Thomson MJ, Pfeil BE, McCouch S (2006). Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. Plant Cell 18, 283-294. |
[47] | Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B, Bustamante C, Yoshimura A, Doi K, McCouch S (2009). Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 182, 1323-1334. |
[48] | Tan L, Li X, Liu F, Sun X, Li C, Zhu Z, Fu Y, Cai H, Wang X, Xie D, Sun C (2008). Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet 40, 1360-1364. |
[49] | Tian F, Li DJ, Fu Q, Zhu ZF, Fu YC, Wang XK, Sun CQ (2006a). Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theor Appl Genet 112, 570-580. |
[50] | Tian F, Zhu Z, Zhang B, Tan L, Fu Y, Wang X, Sun CQ (2006b). Fine mapping of a quantitative trait locus for grain number per panicle from wild rice (Oryza rufipogon Griff.). Theor Appl Genet 113, 619-629. |
[51] | Toriba T, Hirano HY (2014). The DROOPING LEAF and OsETTIN2 genes promote awn development in rice. Plant J 77, 616-626. |
[52] | Tsuji H, Taoka K, Shimamoto K (2013). Florigen in rice: complex gene network for florigen transcription, florigen activation complex, and multiple functions. Curr Opin Plant Biol 16, 228-235. |
[53] | Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H, Ma H, Zhang G, He Z (2008). Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet 40, 1370-1374. |
[54] | Wei FJ, Tsai YC, Wu HP, Huang LT, Chen YC, Chen YF, Wu CC, Tseng YT, Hsing YI (2016). Both Hd1 and Ehd1 are important for artificial selection of flowering time in cultiva- ted rice. Plant Sci 242, 187-194. |
[55] | Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X, Wang J, Jiang L, Zhai H, Wan J (2008). Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res 18, 1199-1209. |
[56] | Wu W, Zheng XM, Lu G, Zhong Z, Gao H, Chen L, Wu C, Wang HJ, Wang Q, Zhou K, Wang JL, Wu F, Zhang X, Guo X, Cheng Z, Lei C, Lin Q, Jiang L, Wang H, Ge S, Wan J (2013). Association of functional nucleotide poly- morphisms at DTH2 with the northward expansion of rice cultivation in Asia. Proc Natl Acad Sci USA 110, 2775-2780. |
[57] | Xing Y, Zhang Q (2010). Genetic and molecular bases of rice yield. Annu Rev Plant Biol 61, 421-442. |
[58] | Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X, Dong Y, Gutenkunst RN, Fang L, Huang L, Li J, He W, Zhang G, Zheng X, Zhang F, Li Y, Yu C, Kristiansen K, Zhang X, Wang J, Wright M, McCouch S, Nielsen R, Wang J, Wang W (2012). Resequencing 50 accessions of cultiv- ated and wild rice yields markers for identifying agronomi- cally important genes. Nat Biotechnol 30, 105-111. |
[59] | Yamanaka S, Nakamura I, Watanabe KN, Sato Y (2004). Identification of SNPs in the waxy gene among glutinous rice cultivars and their evolutionary significance during the domestication process of rice. Theor Appl Genet 108, 1200-1204. |
[60] | Yano K, Yamamoto E, Aya K, Takeuchi H, Lo PC, Hu L, Yamasaki M, Yoshida S, Kitano H, Hirano K, Matsuoka M (2016). Genome-wide association study using whole- genome sequencing rapidly identifies new genes influenc- ing agronomic traits in rice. Nat Genet 48, 927-934. |
[61] | Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000). Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12, 2473-2484. |
[62] | Yu B, Lin Z, Li H, Li X, Li J, Wang Y, Zhang X, Zhu Z, Zhai W, Wang X, Xie D, Sun C (2007). TAC1, a major quanti- tative trait locus controlling tiller angle in rice. Plant J 52, 891-898. |
[63] | Yu G, Olsen KM, Schaal BA (2011). Association between nonsynonymous mutations of starch synthase IIa and starch quality in rice (Oryza sativa). New Phytol 189, 593-601. |
[64] | Zhang LB, Zhu Q, Wu ZQ, Ross-Ibarra J, Gaut BS, Ge S, Sang T (2009). Selection on grain shattering genes and rates of rice domestication. New Phytol 184, 708-720. |
[65] | Zhou Y, Lu D, Li C, Luo J, Zhu BF, Zhu J, Shangguan Y, Wang Z, Sang T, Zhou B, Han B (2012). Genetic control of seed shattering in rice by the APETALA2 transcription factor SHATTERING ABORTION1. Plant Cell 24, 1034-1048. |
[66] | Zhu BF, Si L, Wang Z, Zhou Y, Zhu J, Shangguan Y, Lu D, Fan D, Li C, Lin H, Qian Q, Sang T, Zhou B, Minobe Y, Han B (2011). Genetic control of a transition from black to straw-white seed hull in rice domestication. Plant Physiol 155, 1301-1311. |
[67] | Zhu Y, Nomura T, Xu Y, Zhang Y, Peng Y, Mao B, Hanada A, Zhou H, Wang R, Li P, Zhu X, Mander LN, Kamiya Y, Yamaguchi S, He Z (2006). ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxyg- enase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell 18, 442-456. |
[68] | Zhu Z, Tan L, Fu Y, Liu F, Cai H, Xie D, Wu F, Wu J, Matsumoto T, Sun C (2013). Genetic control of inflore- scence architecture during rice domestication. Nat Com- mun 4, 2200. |
/
〈 | 〉 |