研究报告

草莓对I-、IO3-的吸收特征及对其品质的影响

展开
  • 1浙江大学环境与生物地球化学研究所, 杭州 310027
    2浙江省农业科学院, 杭州 310021
    3中国地质调查局农业地质应用研究中心, 杭州 311201
# 共同第一作者

收稿日期: 2016-01-29

  录用日期: 2016-05-06

  网络出版日期: 2017-04-05

基金资助

浙江省国土资源厅地质勘查项目(No.2014002)和国家自然科学基金(No.40873058, No.40373043)

Absorption Characteristics of Strawberry on I-, IO3- and the Effects on the Quality

Expand
  • 1Institute of Environment & Biogeochemistry, Zhejiang University, Hangzhou 310027, China
    2Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
    3Geological Research Center For Agricultural Applications, China Geological Surver, Hangzhou 311201, China
# Co-first authors

Received date: 2016-01-29

  Accepted date: 2016-05-06

  Online published: 2017-04-05

摘要

提高植物性食品中碘的含量对人体自然补碘具有重要作用。该文通过水培模拟实验, 揭示了草莓(Fragaria ananassa)对I-和IO3-的吸收特征, 在分析不同外源碘浓度下草莓根系以上部分生物量的基础上, 通过对比吸收外源碘前后维生素C、可溶性糖、总酸度和硝酸盐含量的变化, 评价了草莓吸收I-和IO3-对果实品质的影响。研究结果表明, 草莓对碘的吸收量随营养液中I-和IO3-浓度的增加而增加, 相同浓度下草莓吸收的I-明显多于IO3-, 草莓吸收适量的碘可以促进植株生长, 不仅使生物量提高, 而且会增加草莓果实维生素C和可溶性总糖的含量, 从而提高品质。在营养液浓度为0.5-5.0 mg∙kg-1时, 草莓吸收IO3-后会增加果实总酸度和硝酸盐的含量, 降低草莓果实品质。在营养液浓度为0.25-2.5 mg∙kg-1时, 草莓吸收I-后会使果实中总酸度和硝酸盐的含量明显降低, 果实的品质有所提高。研究结果为科学培育含碘草莓提供了技术支撑。

本文引用格式

刘会萍, 洪春来, 李睿, 宋明义, 刘嘉伟, 戴之希, 周骏, 翁焕新 . 草莓对I-、IO3-的吸收特征及对其品质的影响[J]. 植物学报, 2017 , 52(2) : 167 -174 . DOI: 10.11983/CBB16021

Abstract

To improve the iodine content of plant foods plays an important role in supplement of natural iodine for humans. We performed a hydroponic experiment to reveal the characteristics of I-, IO3- uptake by strawberry plants. We measured the aboveground biomass of strawberry plants grown in solution at various iodine concentrations. The effects of I-, IO3- absorption on fruit quality were evaluated in terms of variations in content of vitamin C, soluble sugar, total acidity and nitrate of strawberries under different iodine treatments. The higher the I-, IO3- concentration of the solution, the more iodine the strawberry plants absorbed. The absorption was higher for I- than IO3- under the same exogenous iodine concentration. A proper dose of iodine application promoted the growth of strawberry plants, which increased the biomass and also improved fruit quality by increasing vitamin C and soluble sugar content. Grown with 0.5-5.0 mg∙kg-1 IO3- solution, the total acidity and nitrate content of strawberries increased, which reduced the quality of strawberries. Under 0.25-2.5 mg∙kg-1 I- treatment, the total acidity and nitrate content of strawberries decreased, thereby enhancing the quality of strawberries. These results may provide technical support for scientific cultivation of iodine-enriched strawberry.

[an error occurred while processing this directive]

参考文献

[1] 鲍士旦 (2000). 土壤农化分析. 北京: 中国农业出版社. pp. 137-140.
[2] 陈建勋, 王晓峰 (2002). 植物生理学实验指导. 广州: 华南理工大学出版社. pp. 45-51.
[3] 戴九兰 (2004). 碘在土壤-植物系统中的生物有效性. 博士论文. 济南: 山东农业大学. pp.78-81.
[4] 洪春来, 翁焕新, 严爱兰, 谢伶莉 (2008). 大豆对外源碘吸收与积累特性的研究. 中国油料作物学报 30, 95-99.
[5] 刘会萍, 洪春来, 翁焕新, 朱凤香, 陈晓旸, 王卫平, 薛智勇 (2012). 叶菜类蔬菜对海藻碘的吸收与积累特征. 环境科学学报 32, 2034-2041.
[6] 刘会媛, 白鹤英 (2004). 加碘食盐中碘损失的实验研究(II). 中国井矿盐 35(5), 43-45.
[7] 桑仲娜 (2011). 碘过量对不同人群甲状腺功能影响及成人碘安全摄入量的研究. 博士论文. 天津: 天津医科大学. pp. 83-84.
[8] 翁焕新, 严爱兰, 洪春来, 夏天虹, 刘会萍 (2012). 蔬菜植物对I-、IO3-的吸收及其生物有效性. 地球化学 41, 393-400.
[9] 邢素芝, 汪建飞, 范宝荣, 程志培, 何兴球 (1999). 快速测定植物样品含碘量的新方法. 广东微量元素科学 6(6), 57-60.
[10] 邢怡 (2010). 富碘油菜栽培与干制过程中碘含量变化的初步研究. 硕士论文. 兰州: 兰州理工大学. pp. 54-55.
[11] 于文进, 姚艳, 韦慧明, 龙明华, 唐小付 (2011). 樱桃番茄对根际外源碘的吸收及生理反应特性. 广西植物 31, 513-519.
[12] 余孝颖 (2000). 内蒙高腐殖酸地下水中碘的分布特征与IDD病的关系. 环境科学 21(3), 56-59.
[13] Gonda K, Yamaguchi H, Maruo T, Shinohara Y (2007). Effects of iodine on growth and iodine absorption of hydroponically grown tomato and spinach. Hort Res 6, 223-227.
[14] Hetzel BS (2005). Towards the global elimination of brain damage due to iodine deficiency—the role of the International Council for Control of Iodine Deficiency Disorders. Int J Epidemiol 34, 762-764.
[15] Laurberg P, Cerqueira C, Ovesen L, Rasmussen LB, Perrild H, Andersen S, Pedersen IB, Carle A (2010). Iodine intake as a determinant of thyroid disorders in populations. Best Pract Res Clin Endocrinol Metab 24, 13-27.
[16] Li YO, Diosady LL, Wesley AS (2010). Iodine stability in iodized salt dual fortified with microencapsulated ferrous fumarate made by an extrusion-based encapsulation pro- cess. J Food Eng 99, 232-238.
[17] Longvah T, Toteja GS, Bulliyya G (2012). Stability of added iodine in different Indian cooking processes. Food Chem 130, 953-959.
[18] Rah JH, Anas AM, Chakrabarty A, Sankar R, Pandav CS, Aguayo VM (2015). Towards universal salt iodisation in India: achievements, challenges and future actions. Maternal Child Nutrition 11, 483-496.
[19] Roti E, Uberti ED (2001). Iodine excess and hyperthyroidism.Thyroid 11, 493-500.
[20] Stimec M, Kobe H, Smole K, Kotnik P, Campa AS, Zupancic M, Battelino T, Krzisnik C, Mis NF (2009). Adequate iodine intake of Slovenian adolescents is primarily attributed to excessive salt intake.Nutrition Res 29, 888-896.
[21] Umaly RC, Poel LW (1971). Effects of iodine in various formulations on the growth of barley and pea plants in nutrient solution culture. Ann Bot 35, 127-131.
[22] Waszkowiak K, Szymandera BK (2008). Effect of storage conditions on potassium iodide stability in iodised table salt and collagen preparations.Inter J Food Sci Technol 43, 895-899.
[23] Welch RM, Graham RD (2005). Agriculture: the real nexus for enhancing bioavailable micronutrients in food crops. Trace Elem Med Biol 18, 299-307.
[24] Weng HX, Liu HP, Li DW, Ye ML, Pan LH, Xia TH (2014). An innovative approach for iodine supplementation using iodine-rich phytogenic food.Environ Geochem Health 36, 815-828.
[25] Zhu YG, Huang YZ, Hu Y, Liu YX (2003). Iodine uptake by spinach (Spinacia oleracea L.) plants grown in solution culture: effects of iodine species and solution concentrations.Environ Int 29, 33-37.
文章导航

/

[an error occurred while processing this directive]