[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究报告

基于CSSL的高密度物理图谱定位水稻分蘖角度QTL

展开
  • 江苏省农业科学院粮食作物研究所, 江苏省优质水稻工程技术研究中心, 国家水稻改良中心南京分中心, 南京 210014

收稿日期: 2012-03-13

  修回日期: 2012-06-07

  网络出版日期: 2012-09-04

基金资助

江苏省农业科技自主创新基金

Identification of Tiller Angle Quantitative Trait Loci Based on Chromosome Segment Substituted Lines and High-density Physical Map in Rice

Expand
  • Nanjing Branch of Chinese National Center for Rice Improvement, Jiangsu High Quality Rice Research and Development Center, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China

Received date: 2012-03-13

  Revised date: 2012-06-07

  Online published: 2012-09-04

摘要

对以籼稻9311为遗传背景携带粳稻日本晴基因组的染色体片段置换系(CSSL)的遗传图谱进行分子标记加密, 构建了含250个多态标记的高密度物理图谱。以119个CSSLs为材料, P≤0.001为阈值, 筛选到分蘖角度与受体亲本9311差异极显著的10个系。结合物理图谱和代换作图方法, 共鉴定出5个分蘖角度QTL, 其中qTA11的加性效应表现为增效作用, 来源于9311的等位基因; 其余4个QTL的加性效应为减效作用, 均来源于日本晴的等位基因。qTA6-1qTA6-2分别被定位于第6染色体RM253–RM527之间的3.55 Mb区段和RM3139–RM494的1.65 Mb区间; qTA9被定位于第9染色体RM257–RM189之间的3.40 Mb区段; qTA10被定位在第10染色体RM222–S10-1之间的2.10 Mb区段; qTA11被定位于第11染色体RM1761–RM4504之间的3.30 Mb区间。以上研究结果为水稻分蘖角度QTL的精细定位和株型育种提供了依据。

本文引用格式

赵春芳, 周丽慧, 于新, 赵庆勇, 陈涛, 姚姝, 张亚东, 朱镇, 王才林 . 基于CSSL的高密度物理图谱定位水稻分蘖角度QTL[J]. 植物学报, 2012 , 47(6) : 594 -601 . DOI: 10.3724/SP.J.1259.2012.00594

Abstract

We developed a 9311/Nipponbare physical map with 250 simple sequence repeat/sequence-tagged site markers by adding markers on the original genetic map. We screened 119 chromosome segment substituted lines and obtained 10 lines with significantly different tiller angle trait as compared with the recipient 9311 (P≤0.001). From this physical map, we detected quantitative trait loci (QTL) using the substitution map strategy. We identified 5 tiller-angle QTL, with qTA11 showing a positive effect and derived from the 9311 allele. Additional 4 QTL had a negative effect and were all derived from Nipponbare alleles. qTA6-1 and qTA6-2 were located on chromosome 6 at 3.55 Mb between RM253 and RM527 and at 1.65 Mb between RM3139 and RM494, respectively; qTA9 was located on chromosome 9 at 3.40 Mb between RM257 and RM189; qTA10 was located on chromosome 10 within 2.10 Mb between RM222 and S10-1; qTA11 was located on chromosome 11 within 3.30 Mb between RM1761 and RM4504. These results provide useful information for fine mapping new QTL of tiller angle and for rice breeding by plant type.
[an error occurred while processing this directive]

参考文献

欧阳由男 (2008). 水稻分蘖角度动态变化的生态生理机理研究和数量遗传分析. 博士论文. 杭州:浙江大学.
钱前, 何平, 滕胜, 曾大力, 朱立煌 (2001). 水稻分蘖角度的QTL分析. 遗传学报 28(1), 29-32.
沈圣泉, 庄杰云, 包劲松, 郑康乐, 夏英武, 舒庆尧 (2005). 水稻分蘖最大角度的QTL分析. 农业生物技术学报 13(1), 16-20.
杨德卫, 张亚东, 朱镇, 赵凌, 林静, 陈涛, 朱文银, 王才林 (2010). 基于CSSL的水稻抽穗期QTL定位及遗传分析. 植物学报 45(2), 189-197.
余传元, 刘裕强, 江玲, 王春明, 翟虎渠, 万建民 (2005). 水稻分蘖角度的QTL定位和主效基因的遗传分析. 遗传学报 32(9), 948-954.
朱文银, 王才林, 杨连群 (2009). 5个籼稻背景的高代回交置换系的置换片段分析. 植物学报 44(6), 666-672.
朱文银, 杨德卫, 林静, 赵凌, 张亚东, 朱镇, 陈涛, 王才林 (2008). 利用染色体片段置换系定位水稻粒型QTL. 江苏农业学报 24(3), 226-231.
Abenes MLP, Tabien RE, McCouch SR, Ikeda R, Ronald P, Khush GS, Huang N (1994). Orientation and integration of the classical and molecular genetic maps of chromosome 11 in rice. Euphytica 76(1-2), 81-87.
Eshed Y, Zamir D (1995). An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141, 1147-1162.
Jin J, Huang W, Gao JP, Yang J, Zhu MZ, Luo D, Lin HX (2008). Genetic control of rice plant architecture under domestication. Nat Genet 40, 1365-1369.
Li PJ, Wang YH, Qian Q, Fu ZM, Wang M, Zeng D, Li BH, Wang XJ, Li JY (2007). LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cel Res 17, 402-410.
Li ZK, Paterson AH, Pinson SRM, Stansel JW (1999). RFLP facilitated analysis of tiller and leaf angles in rice (Oryza sativa L.). Euphytica 109, 79-84.
McCouch SR, Cho YG, Yano M, Paul E, Blinstrub M (1997). Report on QTL nomenclature. Rice Genet Newsl 14, 11-13.
McCouch SR., Teytelman L, Xu YB, Lobos KB, Clare K, Walton M, Fu BY, Maghirang R, Li ZK, Xing YZ, Zhang QF, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002). Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9(6), 199-207.
Miura K, Ashikari M, Matsuoka M, Hsing YIC (2003). Mapping of the lazy gene, la. Rice Genet Newsl 20, 29-30.
Singh K, Multani DS, Khush GS (1996). Secondary trisomic and telotrisomics of rice: origin, characterization, and use in determining the orientation of chromosome map. Genetics 143, 517-529.
Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007). A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39(5), 623-630.
Takahashi ME (1963). Linkage groups and gene schemes of some striking morphological characters in Japanese rice. In: IRRI, ed. Rice Genetics and Cytogenetics. Amsterdam: Elsevier Publication Company. pp. 215-236.
Tan L, Li XR, Liu FX, Sun XY, Li CG, Zhu ZF, Fu YC, Cai HW, Wang XK, Xie DX, Sun CQ (2008). Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet 40, 1360-1364.
Wang Y, Li J (2008). Rice, rising. Nat Genet 40, 1273-1275.
Wang Y, Li J (2008). Molecular basis of plant architecture. Nat Genet 59, 253-279.
Weng JF, Gu SH, Wan XY, Gao H, Guo T, Ning S, Lei C, Zhang X, Cheng ZJ, Guo XP, Wang JL, Jiang L, Zhai HQ, Wan JM (2008). Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res 18(12), 1199-1209.
Wu JY, Wu HK, Chung MC (2002). Co-dominant RAPD markers closely linked with two morphological genes in rice (Oryza sativa L.). Bot Bull Acad Sin 43, 171-180.
Xu YB, Susan RM, Shen ZT (1998). Transgressive Segregation of Tiller Angle in Rice Caused by Complementary Gene Action. Crop Sci 38, 12-19.
Xue WY, Xing YZ, Weng XY, Zhao Y, Tang WJ, Wang L, Zhou HJ, Yu SB, Xu CG, Li XH, Zhang QF (2008). Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40, 761-767.
Yamamoto T, Sasaki T. Yano M (1997). Genetic analysis of spreading stub using indica/japonica backcrossed progenies in rice. Breeding Sci 47, 141-144.
Yan WH, Wang P, Chen HX, Zhou HJ, Li QP, Wang CR, Ding ZH, Zhang YS, Yu SB, Xing YZ, Zhang QF (2011). A Major QTL, Ghd8, Plays Pleiotropic Roles in Regulating Grain Productivity, Plant Height, and Heading Date in Rice. Mol Plant 4 (2), 319-330.
Yoshihara T, Iino M (2007). Identification of the gravitropism-related rice gene LAZY1 and elucidation of LAZY1-dependent and -independent gravity signaling pathways. Plant Cell Physiol 48(5), 678-688.
Young ND, Tanksley SD (1989). Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet 77, 95-101.
Yu BS, Lin ZW, Li HX, Li XJ, Li JY, Wang YH, Zhang X, Zhu ZF, Zhai WX, Wang XK, Xie DX, Sun CQ (2007). TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J 52(5), 891-898.
Yu ZH, McCouch SR, Kinoshita T, Sato S (1995). Association of morphological and RFLP markers in rice (Oryza sativa L.). Genome 38, 566-574.
Zhu WY, Lin J, Yang DW, Zhao L, Zhang YD, Zhu Z, Chen T, Wang CL (2009). Development of chromosome segment substitution lines derived from backcross between two sequenced rice cultivars, indica recipient 93-11 and japonica donar Nipponbare. Plant Mol Bio Rep 27, 126-131.
文章导航

/

[an error occurred while processing this directive]