研究报告

ECS1参与调节CO2诱导的拟南芥气孔关闭和H2O2积累

展开
  • 河南大学生命科学学院, 河南省植物逆境生物学重点实验室, 棉花生物学国家重点实验室, 开封 475001

收稿日期: 2011-11-07

  修回日期: 2012-02-11

  网络出版日期: 2012-07-06

基金资助

国家自然科学基金;国家自然科学基金

ECS1 Mediates CO2-induced Stomatal Closure and the Production of H2O2 in Arabidopsis thaliana

Expand
  • State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology of Henan Province, School of Life Sciences, Henan University, Kaifeng 475001, China

Received date: 2011-11-07

  Revised date: 2012-02-11

  Online published: 2012-07-06

摘要

CO2浓度升高可以诱导植物叶片气孔关闭, 提高植物对高浓度CO2的适应性。但植物如何感知CO2浓度变化并启动气孔关闭反应的分子机制至今仍不十分清楚。利用高通量、非侵入的远红外成像技术, 建立了拟南芥(Arabidopsis thaliana)气孔对CO2浓度变化反应相关的突变体筛选技术, 筛选出对环境CO2浓度敏感的拟南芥突变体ecs1。遗传学分析表明, ecs1为单基因隐性突变体, 突变基因ECS1编码一个跨膜钙离子转运蛋白。与野生型拟南芥相比, 360 μL·L–1CO2可引起ecs1突变体叶片温度上升和气孔关闭, ecs1突变体对900 μL·L–1CO2长时间处理具有较强的适应性。进一步的实验表明, 360μL·L–1CO2即可诱导ecs1突变体叶片积累较高浓度的H2O2, 而900 μL·L–1CO2才能够诱导野生型拟南芥叶片积累H2O2。因此, ECS1可能参与调节高浓度CO2诱导的拟南芥气孔关闭和H2O2产生, H2O2可能作为第二信号分子介导CO2诱导拟南芥气孔关闭的反应。

本文引用格式

安国勇, 丁秀艳, 武桂丽, 李海旺, 宋纯鹏 . ECS1参与调节CO2诱导的拟南芥气孔关闭和H2O2积累[J]. 植物学报, 2012 , 47(3) : 209 -216 . DOI: 10.3724/SP.J.1259.2012.00209

Abstract

Elevating atmospheric CO2 concentration greatly affects global climate changes and the development and production of crops. Stomatal closure can be induced by high concentration CO2 and improves the plant’s adaptation to elevated levels of atmospheric CO2. However, the mechanism is still unclear. Using infrared thermography, we isolated an Arabidopsis mutant ecs1. Genetic analysis revealed that the mutant is controlled by a single recessive nuclear gene. Map-based cloning revealed that the mutant gene encodes an integral membrane protein that homologizes with calcium transporter. Compared with wild-type Arabidopsis, ecs1 showed stomatal closure and increased leaf temperature under 360 μL·L–1CO2. ecs1 had enhanced adaptation to stress of 900 μL·L–1CO2 for a long time. In addition, ecs1 produced more H2O2 under 360 μL·L–1CO2 than wild type. Under 900 μL·L–1CO2, both ecs1 and wild type produced more H2O2. Therefore, H2O2 mediates CO2-induced stomatal closure and is involved in the ECS1 signal pathway in Arabidopsis.

参考文献

殴志英, 彭长连 (2003). 高浓度二氧化碳对植物影响的研究进展. 热带亚热带植物学报 11: 190-196.
Assmann SM (1988). Enhancement of the Stomatal Response to Blue Light by Red Light, Reduced Intercellular Concentrations of CO2, and Low Vapor Pressure Differences. Plant physiology 87, 226-231.
Beerling DJ, Woodward FI (1995). Stomatal Responses of Variegated Leaves to CO2 Enrichment. Annals of Botany 75, 507-511.
Conklin PL, Pallanca JE, Last RL, Smirnoff N (1997). L-Ascorbic Acid Metabolism in the Ascorbate-Deficient Arabidopsis Mutant vtc1. Plant physiology 115, 1277-1285.
Hashimoto M, Negi J, Young J, Israelsson M, Schroeder JI, Iba K (2006). Arabidopsis HT1 kinase controls stomatal movements in response to CO2. Nature cell biology 8, 391-397.
Hetherington AM, Raven JA (2005) The biology of carbon dioxide. Current Biology 15, R406-R410.
Israelsson M, Siegel RS, Young J, Hashimoto M, Iba K, Schroeder JI (2006). Guard cell ABA and CO2 signaling network updates and Ca2+ sensor priming hypothesis. Current Opinion in Plant Biology 9, 654-663.
Johnson PR, Ecker JR (1998). The ethylene gas signal transduction pathway, a molecular perspective. Annual review of genetics 32, 227-254.
Kolla V, Vavasseur A, Raghavendra A (2007). Hydrogen peroxide production is an early event during bicarbonate induced stomatal closure in abaxial epidermis of Arabidopsis. Planta 225, 1421-1429.
Lake JA, Quick WP, Beerling DJ, Woodward FI (2001). Plant development. Signals from mature to new leaves. Nature 411, 154.
Lake JA, Woodward FI, Quick WP (2002). Long‐distance CO2 signalling in plants. Journal of Experimental Botany 53, 183-193.
Lawson T, Oxborough K, Morison JI, Baker NR (2003). The responses of guard and mesophyll cell photosynthesis to CO2, O2, light, and water stress in a range of species are similar. J Exp Bot 54, 1743-1752.
Lee M, Choi Y, Burla B, Kim Y-Y, Jeon B, Maeshima M, Yoo J-Y, Martinoia E, Lee Y (2008). The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2. Nature cell biology 10, 1217-1223.
Leymarie J, Vavasseur A, Lasceve G (1998) CO2 sensing in stomata of abil-1 and abi2-1 mutants of Arabidopsis thaliana. Plant Physiology and Biochemistry 36, 539-543.
Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. The Plant cell 14, 3089-3099.
Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M, Iba K (2008). CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452, 483-486.
Radunz A, Alfermann K, Schmid GH (2000). State of the lipid and fatty acid composition in chloroplasts of Nicotiana tabacum under the influence of an increased CO2 partial pressure of 700 p.p.m. Biochem Soc Trans 28, 885-887.
Raschke K, Shabahang M, Wolf R (2003) The slow and the quick anion conductance in whole guard cells, their voltage-dependent alternation, and the modulation of their activities by abscisic acid and CO2. Planta 217, 639-650.
Song Y, Kang Y, Liu H, Zhao X, Wang P, An G, Zhou Y, Miao C, Song C (2006). Identification and primary genetic analysis of Arabidopsis stomatal mutants in response to multiple stresses. Chinese Science Bulletin 51, 2586-2594.
Teng N, Wang J, Chen T, Wu X, Wang Y, Lin J (2006). Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytologist 172, 92-103.
Ulrich L (2007). Carbon dioxide signalling in plant leaves. Comptes Rendus Biologies 330, 375-381
Vavasseur A, LascèVe G, Couchat P (1990). Different stomatal responses of maize leaves after blue or red illumination under anoxia. Plant, cell & environment 13, 389-394.
Vavasseur A, Raghavendra AS (2005). Guard cell metabolism and CO2 sensing. New Phytologist 165, 665-682.
Webb A, Hetherington AM (1997). Convergence of the Abscisic Acid, CO2, and Extracellular Calcium Signal Transduction Pathways in Stomatal Guard Cells. Plant physiology 114, 1557-1560.
Woodward FI, Lake JA, Quick WP (2002). Stomatal development and CO2, ecological consequences. New Phytologist 153, 477-484.
Young JJ, Mehta S, Israelsson M, Godoski J, Grill E, Schroeder JI (2006). CO2 signaling in guard cells, Calcium sensitivity response modulation, a Ca2+-independent phase, and CO2 insensitivity of the gca2 mutant. Proceedings of the National Academy of Sciences 103, 7506-7511.
Zhang F, Wang Y, Yang Y, Wu H, Wang D, Liu J (2007). Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. Plant, cell & environment 30, 775-785.
文章导航

/