专题论坛

水稻细菌性穗枯病的病原特性和抗性研究进展

展开
  • 浙江师范大学化学与生命科学学院, 金华 321004

收稿日期: 2018-09-17

  录用日期: 2018-12-10

  网络出版日期: 2018-12-10

基金资助

国家转基因重大科技专项(2016ZX08009003-003-008);2018年浙江省大学生科技创新活动计划新苗人才计划(2018R404001);2018年浙江省大学生科技创新活动计划新苗人才计划(2018R404029)

Research Progress on Pathogenic Characteristics and Resistance of Bacterial Panicle Blight of Rice

Expand
  • College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China

Received date: 2018-09-17

  Accepted date: 2018-12-10

  Online published: 2018-12-10

摘要

水稻(Oryza sativa)细菌性穗枯病是世界性的重要病害之一, 严重威胁全球范围水稻的高产稳产。虽然该病目前仍被列为我国的检疫性病害, 但近几年的研究表明, 穗枯病随时有在内地蔓延的潜在危险, 因此除了加强检疫工作, 开展针对性的防控技术研发也十分必要。水稻细菌性穗枯病菌在侵染过程中涉及多种毒力因子, 同时, 水稻在与病原菌的长期互作过程中演化出了多种防卫机制, 抗性基因是主要的防卫机制之一。挖掘水稻基因组中抗细菌性穗枯病遗传位点并培育抗病品种是最安全且经济有效的防治途径。该文综述了水稻细菌性穗枯病的病原菌特性、发病特征、发病机制、病害循环和对水稻细菌性穗枯病的抗性研究现状, 以期为挖掘和分离水稻穗枯病抗性位点提供参考。

本文引用格式

叶雯澜,马国兰,袁李亚男,郑士仪,程琳乔,方媛,饶玉春 . 水稻细菌性穗枯病的病原特性和抗性研究进展[J]. 植物学报, 2019 , 54(2) : 277 -283 . DOI: 10.11983/CBB18197

Abstract

Bacterial panicle blight of rice (BPBR) is one of the most important diseases of rice; it seriously threatens the high and stable yield of rice in the world. Although the disease is still listed as a quarantine disease in China, recent studies have shown that BPBR can spread at any time. Therefore, in addition to strengthening quarantine work, targeted control technology research is needed. During the process of infection, Burkholderia glumae has evolved multiple virulence factors. However, at the same time, rice has evolved a variety of defense mechanisms during the long-term interaction between rice and pathogens. Resistance genes are one of the main defense mechanisms. Therefore, mining the resistance locus of BPBR on the rice genome and breeding resistant varieties is the safest and most effective way to control the disease. To provide references for excavation and separation resistance sites, this paper reviews the pathogenic characteristics, pathogenesis, disease cycle and rice resistance to BPBR.

参考文献

[1] 李春宏, 付三雄, 戚存扣 ( 2014). 应用基因芯片分析甘蓝型油菜柱头特异表达基因. 植物学报 49, 246-253.
[2] 李路, 刘连盟, 王国荣, 汪爱娟, 王玲, 孙磊, 黎起秦, 黄世文 ( 2015). 水稻穗腐病和穗枯病的研究进展. 中国水稻科学 29, 215-222.
[3] 李路, 徐以华, 梁梦琦, 王玲, 刘连盟, 侯雨萱, 黎起秦, 黄世文 ( 2017). 水稻对穗枯病的抗病机理初步研究. 中国水稻科学 31, 551-558.
[4] 龙海, 李芳荣, 冯建军, 李一农 ( 2015). 水稻细菌性谷枯病研究进展. 中国植保导刊 35(7), 73-78.
[5] 罗金燕 ( 2007). 水稻细菌性谷枯病菌的风险分析、鉴定检测及其拮抗细菌的研究. 博士论文. 杭州: 浙江大学. pp. 2-85.
[6] 罗金燕, 谢关林, 李斌 ( 2003). 水稻细菌性谷枯病的生物学特征及其检疫意义. 植物检疫 17, 243-245.
[7] 罗金燕, 徐福寿, 王平, 徐丽慧, 谢关林 ( 2008). 水稻细菌性谷枯病病原菌的分离鉴定. 中国水稻科学 22, 82-86.
[8] 谢关林, 罗金燕, 李斌 ( 2003). 水稻危险性病害——细菌性谷枯病及其病原鉴别. 植物保护 29(5), 47-49.
[9] 徐丽慧 ( 2008). 水稻细菌性谷枯病菌的分子检测及细菌性褐条病病原鉴定研究. 硕士论文. 杭州: 浙江大学. pp. 3.
[10] 朱金国, 莫瑾, 朱水芳, 赵文军, 彭梓, 刘红霞, 钟文英 ( 2010). 利用双重PCR-DHPLC技术检测水稻细菌性谷枯病菌的研究. 植物病理学报 40, 449-455.
[11] Boekema BKL, Beselin A, Breuer M, Hauer B, Koster M, Rosenau F, Jaeger KE, Tommassen J ( 2007). Hexa- decane and Tween 80 stimulate lipase production in Burkholderia glumae by different mechanisms. Appl Environ Microbiol 73, 3838-3844.
[12] Chun H, Choi O, Goo E, Kim N, Kim H, Kang Y, Kim J, Moon JS, Hwang I ( 2009). The quorum sensing dependent gene katG of Burkholderia glumae is important for protection from visible light. J Bacteriol 191, 4152-4157.
[13] Cui ZQ, Zhu B, Xie GL, Li B, Huang SW ( 2016). Research status and prospect of Burkholderia glumae , the pathogen causing bacterial panicle blight. Rice Sci 23, 111-118.
[14] Daniels R, Vanderleyden J, Michiels J ( 2004). Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28, 261-289.
[15] Davey ME, O’Toole GA ( 2000). Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol 64, 847-867.
[16] Devescovi G, Bigirimana J, Degrassi G, Cabrio L, LiPuma JJ, Kim J, Hwang I, Venturi V ( 2007). Involvement of a quorum-sensing-regulated lipase secreted by a clinical isolate of Burkholderia glumae in severe disease symptoms in rice. Appl Environ Microbiol 73, 4950-4958.
[17] Francis F, Kim J, Ramaraj T, Farmer A, Rush MC, Ham JH ( 2013). Comparative genomic analysis of two Burkholderia glumae strains from different geographic origins reveals a high degree of plasticity in genome structure associated with genomic islands. Mol Genet Genomics 288, 195-203.
[18] Frenken LGJ, Bos JW, Visser C, Müller W, Tommassen J, Verrips CT ( 1993). An accessory gene, lipB, required for the production of active Pseudomonas glumae lipase. Mol Microbiol 9, 579-589.
[19] Goto K, Ohata K ( 1956). New bacterial diseases of rice (brown stripe and grain rot). Ann Phytopathol Soc Jpn 21, 46-47.
[20] Ham JH, Melanson RA, Rush MC ( 2011). Burkholderia glumae: next major pathogen of rice? Mol Plant Pathol 12, 329-339.
[21] Hikichi Y, Noda C, Shimizu K ( 1989). Oxolic acid. Jpn Pestic Infect 55, 21-23.
[22] Jang MS, Goo E, An JH, Kim J, Hwang I ( 2014). Quorum sensing controls flagellar morphogenesis in Burkholderia glumae . PLoS One 9, e84831.
[23] Jeong Y, Kim J, Kim S, Kang Y, Nagamatsu T, Hwang I ( 2003). Toxoflavin produced by Burkholderia glumae causing rice grain rot is responsible for inducing bacterial wilt in many field crops. Plant Dis 87, 890-895.
[24] Kang Y, Kim J, Kim S, Kim H, Lim JY, Kim M, Kwak J, Moon JS, Hwang I ( 2008). Proteomic analysis of the proteins regulated by HrpB from the plant pathogenic bacterium Burkholderia glumae. Proteomics 8, 106-121.
[25] Kawaradani M, Okada K, Kusakari S ( 2000). New selective medium for isolation of Burkholderia glumae from rice seeds. J Gen Plant Pathol 66, 234-237.
[26] Kim S, Park J, Kim JH, Lee J, Bang B, Hwang I, Seo YS ( 2013). RNAseq-based transcriptome analysis of Burk- holderia glumae quorum sensing. Plant Pathol J 29, 249-259.
[27] Kim S, Park J, Lee J, Shin D, Park DS, Lim JS, Choi IY, Seo YS ( 2014). Understanding pathogenic Burkholderia glumae metabolic and signaling pathways within rice tissues through in vivo transcriptome analyses. Gene 547, 77-85.
[28] Lim J, Lee TH, Nahm BH, Choi YD, Kim M, Hwang I ( 2009). Complete genome sequence of Burkholderia glumae BGR1 . J Bacteriol 191, 3758-3759.
[29] Maeda Y, Kiba A, Ohnishi K, Hikichi Y ( 2004). New method to detect oxolinic acid-resistant Burkholderia glumae infesting rice seeds using a mismatch amplification mutation assay polymerase chain reaction. J Gen Plant Pathol 70, 215-217.
[30] Magbanua ZV, Arick M 2nd, Buza T, Hsu CY, Showmaker KC, Chouvarine P, Deng P, Peterson DG, Lu S ( 2014). Transcriptomic dissection of the rice- Burkholderia glumae interaction. BMC Genomics 15, 755.
[31] Melanson RA, Barphagha I, Osti S, Lelis TP, Karki HS, Chen RX, Shrestha BK, Ham JH ( 2017). Identification of new regulatory genes involved in the pathogenic functions of the rice-pathogenic bacterium Burkholderia glumae . Mi- crobiology 163, 266-279.
[32] Mizobuchi R, Sato H, Fukuoka S, Tanabata T, Tsushima S, Imbe T, Yano M ( 2013a). Mapping a quantitative trait locus for resistance to bacterial grain rot in rice. Rice 6, 13.
[33] Mizobuchi R, Sato H, Fukuoka S, Tsushima S, Imbe T, Yano M ( 2013b). Identification of qRBS1 , a QTL involved in resistance to bacterial seedling rot in rice. Theor Appl Genet 126, 2417-2425.
[34] Mizobuchi R, Sato H, Fukuoka S, Tsushima S, Yano M ( 2015). Fine mapping of RBG2, a quantitative trait locus for resistance to Burkholderia glumae, on rice chromosome 1. Mol Breed 35, 15.
[35] Nandakumar R, Rush MC ( 2008). Analysis of gene expression in Jupiter rice showing partial resistance to rice panicle blight caused by Burkholderia glumae . Phytopathology 98, 112.
[36] Nickzad A, Lépine F, Déziel E ( 2015). Quorum sensing controls swarming motility of Burkholderia glumae through regulation of rhamnolipids. PLoS One 10, e0128509.
[37] Pinson SRM, Shahjahan AKM, Rush MC, Groth DE ( 2010). Bacterial panicle blight resistance QTLs in rice and their association with other disease resistance loci and heading date. Crop Sci 50, 1287-1297.
[38] Sha X, Linscombe SD, Groth DE, Bond JA, White LM, Utomo HS, Dunand RT ( 2006). Registration of ‘Jupiter’ rice. Crop Sci 46, 1811-1812.
[39] Suzuki F, Sawada H, Azegami K, Tsuchiya K ( 2004). Molecular characterization of the tox operon involved in toxoflavin biosynthesis of Burkholderia glumae. J Gen Plant Pathol 70, 97-107.
[40] Trung HM, Van NV, Vien NV, Lam DT, Lien M ( 1993). Occurrence of rice grain rot disease in Vietnam. Int Rice Res Notes 18, 30.
[41] Tsushima S, Mogi S, Naito H, Saito H ( 1989). Existence of Pseudomonas glumae on the rice seeds and development of the simple method for detecting P. glumae from the rice seeds. Bull Kyushu Natl Agric Exp Stn 25, 261-270.
[42] Tsushima S, Wakimoto S, Mogi S ( 1986). Selective medium for detecting Pseudomonas glumae Kurita et Tabei, the causal bacterium of grain rot of rice. Jpn J Phytopathol 52, 253-259.
文章导航

/