技术方法

霜冻过程温光因子分析及模拟霜冻条件的建立

展开
  • 1 山东农业大学园艺科学与工程学院/作物生物学国家重点实验室, 泰安 271018
    2 贵州大学农学院, 贵阳 550025
    3 德州市园林管理局, 德州 253000

收稿日期: 2018-04-10

  录用日期: 2018-06-20

  网络出版日期: 2018-12-06

基金资助

现代农业产业技术体系建设专项(CARS-29-zp-2);山东省“双一流”建设奖补资金(SYL2017YSTD10);长江学者和创新团队发展计划(IRT15R42)

Analysis of Temperature and Light Factors during Frost Events and Establishing Conditions for Simulated Frost

Expand
  • 1 State Key Laboratory of Crop Biology, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
    2 College of Agriculture, Guizhou University, Guiyang 550025, China
    3 Dezhou Municipal Gardening Administration Bureau, Dezhou 253000, China

Received date: 2018-04-10

  Accepted date: 2018-06-20

  Online published: 2018-12-06

摘要

近年来霜冻对我国果树产业的影响越来越大, 建立科学的模拟霜冻程序对于加强果树霜冻基础研究十分必要。基于对大田霜冻天气的实际观测, 分析了自然霜冻在降温速度、低温极限、升温速度以及霜后光照条件方面的特点, 建立了用于实验室环境下的霜冻处理程序。结果表明, 霜冻发生时气温的变化主要包括降温、低温维持和升温3个阶段。降温和升温阶段气温的变化近似线性; 霜后一般伴随较强的光照。经研究确定模拟霜冻条件为: 黑暗环境下, 气温在30分钟内从室温(20°C)降到5°C, 在5°C维持30分钟, 之后以0.8°C·h -1的速度降到-2°C, 在-2°C维持2小时, 再以4.7°C·h -1的速度回升到5°C结束霜冻处理。霜冻处理后的恢复条件为气温16°C及光强800 μmol·m -2·s -1

关键词: 霜冻; 温度; 光照; 模拟

本文引用格式

孙鲁龙,段秋艳,翟衡,杜远鹏 . 霜冻过程温光因子分析及模拟霜冻条件的建立[J]. 植物学报, 2019 , 54(2) : 237 -244 . DOI: 10.11983/CBB18093

Abstract

Frost has had a prominent influence on the fruit industry in China in recent years. We need to establish a system to simulate frost treatment for fruit trees. Based on observations of frost events in field, we analyzed the characteristics of frost in terms of cooling rate, the low temperature limit, warming rate, and light conditions after frost treatment and established a system to simulate frost treatment in the laboratory. Temperature during the frost treatment in field could be divided into three stages: cooling, extreme temperature maintenance and warming. The temperature during cooling and warming stages changed in an approximately linear manner. Frost is generally followed by high intensity light. The simulated frost process was determined as followed: the temperature drops from room temperature (20°C) to 5°C in 30 min, and is maintained at 5°C for 30 min, then decreases to -2°C at a rate of 0.8°C·h -1, is maintained at -2°C for 2 h, then increases to 5°C at a rate of 4.7°C·h -1 in the dark. The recovery condition after frost was 16°C and 800 μmol·m -2·s -1.

Key words: frost; temperature; light; simulation

参考文献

[1] 杜远鹏, 高振, 付晴晴, 郭淑华, 翟衡 ( 2017). 两个葡萄杂交后代根系抗葡萄根瘤蚜及抗寒性鉴定. 昆虫学报 60, 197-204.
[2] 宋伟, 孙鲁龙, 杜远鹏, 翟衡 ( 2016). 不同防霜剂对赤霞珠葡萄幼叶抵御霜冻的效果研究. 中外葡萄与葡萄酒 ( 1), 6-9.
[3] 孙鲁龙, 耿庆伟, 宋伟, 邢浩, 杜远鹏, 翟衡 ( 2016). 不同光强对霜冻后葡萄叶片PSII光化学活性恢复的影响. 植物生理学报 52, 1243-1247.
[4] 孙鲁龙, 耿庆伟, 邢浩, 杜远鹏, 翟衡 ( 2017a). 低温处理葡萄根系对叶片PSII活性的影响. 植物学报 52, 159-166.
[5] 孙鲁龙, 宋伟, 杜远鹏, 翟衡 ( 2017b). 光化学反射指数在比较葡萄叶片耐霜冻能力中的应用. 植物学报 52, 543-549.
[6] Augspurger CK ( 2009). Spring 2007 warmth and frost: phenology, damage and refoliation in a temperate deci- duous forest. Funct Ecol 23, 1031-1039.
[7] Augspurger CK ( 2013). Reconstructing patterns of temperature, phenology, and frost damage over 124 years: spring damage risk is increasing. Ecology 94, 41-50.
[8] Bennie J, Kubin E, Wiltshire A, Huntley B, Baxter R ( 2010). Predicting spatial and temporal patterns of bud- burst and spring frost risk in north-west Europe: the implications of local adaptation to climate. Global Change Biol 16, 1503-1514.
[9] Bertamini M, Muthuchelian K, Rubinigg M, Zorer R, Velasco R, Nedunchezhian N ( 2006). Low night temperature increased the photo-inhibition of photosynthesis in grapevine ( Vitis vinifera L. cv. Riesling) leaves. Environ Exp Bot 57, 25-31.
[10] CaraDonna PJ, Bain JA ( 2016). Frost sensitivity of leaves and flowers of subalpine plants is related to tissue type and phenology. J Ecol 104, 55-64.
[11] Chen J ( 2000). Spring frost damage to four Pierce's disease resistant bunch grape cultivars in North Florida. Proc Fla State Hort Soc 113, 47-49.
[12] Guy C, Kaplan F, Kopka J, Selbig J, Hincha DK ( 2008). Metabolomics of temperature stress. Physiol Plant 132, 220-235.
[13] Heber U, Bukhov NG, Shuvalov VA, Kobayashi Y, Lange OL ( 2001). Protection of the photosynthetic apparatus against damage by excessive illumination in Homoiohydric leaves and Poikilohydric mosses and lichens. J Exp Bot 52, 1999-2006.
[14] Inouye DW ( 2008). Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89, 353-362.
[15] Jackson DI, Lombard PB ( 1993). Environmental and management practices affecting grape composition and wine quality—a review. Am J Enol Vitic 44, 409-430.
[16] Jalili A, Jamzad Z, Thompson K, Araghi MK, Ashrafi S, Hasaninejad M, Palizdar M ( 2010). Climate change, unpredictable cold waves and possible brakes on plant migration. Global Ecol Biogeogr 19, 642-648.
[17] Jones GV, Davis RE ( 2000). Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am J Enol Vitic 51, 249-261.
[18] Kartschall T, Wodinski M, von Bloh W, Oesterle H, Rachimow C, Hoppmann D ( 2015). Changes in phenology and frost risks of Vitis vinifera( cv Riesling). Meteor Z 24, 189-200.
[19] Kidokoro S, Yoneda K, Takasaki H, Takahashi F, Shinozaki K, Yamaguchi-Shinozaki K ( 2017). Different cold- signaling pathways function in the responses to rapid and gradual decreases in temperature. Plant Cell 29, 760-774.
[20] Lazdiņa D, Šēnhofa S, Zeps M, Makovskis K, Bebre I, Jansons ā ( 2016). The early growth and fall frost damage of poplar clones in Latvia . Agron Res 14, 109-122.
[21] Lenz A, Hoch G, Vitasse Y, Körner C ( 2013). European deciduous trees exhibit similar safety margins against damage by spring freeze events along elevational gradients. New Phytol 200, 1166-1175.
[22] Matzneller P, Götz KP, Chmielewski FM ( 2016). Spring frost vulnerability of sweet cherries under controlled conditions. Int J Biometeorol 60, 123-130.
[23] Mosedale JR, Wilson RJ, Maclean IMD ( 2015). Climate change and crop exposure to adverse weather: changes to frost risk and grapevine flowering conditions. PLoS One 10, e0141218.
[24] Olszewski F, Jeranyama P, Kennedy CD, DeMoranville CJ ( 2017). Automated cycled sprinkler irrigation for spring frost protection of cranberries. Agric Water Manage 189, 19-26.
[25] Sakai A, Larcher W ( 2012). Frost Survival of Plants: Responses and Adaptation to Freezing Stress, Vol. 62. New York: Springer Science & Business Media. pp. 39-54.
[26] Szalay L, Molnár á, Kovács S ( 2017). Frost hardiness of flower buds of three plum ( Prunus domestica L.) cultivars. Sci Hortic 214, 228-232.
[27] Vitasse Y, Lenz A, Hoch G, Körner C ( 2014). Earlier leaf- out rather than difference in freezing resistance puts juvenile trees at greater risk of damage than adult trees. J Ecol 102, 981-988.
[28] Wanjiku J, Bohne H ( 2015). Early frost reactions of different populations of hazelnut ( Corylus avellana L.). Eur J Hortic Sci 80, 162-169.
[29] Wheeler JA, Hoch G, Cortés AJ, Sedlacek J, Wipf S, Rixen C ( 2014). Increased spring freezing vulnerability for alpine shrubs under early snowmelt. Oecologia 175, 219-229.
文章导航

/