技术方法

叶面积指数田间测量中有限长度平均法的改进

展开
  • 1北京师范大学全球变化与地球系统科学研究院, 北京 100875
    2北京师范大学-中国科学院遥感与数字地球研究所遥感科学国家重点实验室, 北京 100875

† 共同第一作者。

收稿日期: 2017-04-14

  录用日期: 2017-08-30

  网络出版日期: 2018-11-29

基金资助

国家自然科学基金(No.41476161, No.41331171)、遥感科学国际重点实验室开放基金(No.OFSLRSS201626)和国家重点研发计划(No.2016YFA0600102)

A Modification of the Finite-length Averaging Method in Measuring Leaf Area Index in Field

Expand
  • 1College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
    2State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Beijing Normal University and Institute of Remote Sensing and Digital Earth, Chinese Academy and Sciences, Beijing 100875, China

† These authors contributed equally to this paper

Received date: 2017-04-14

  Accepted date: 2017-08-30

  Online published: 2018-11-29

摘要

叶面积指数(LAI)的田间测量是生态和农业等领域的常规工作之一, 测量方法分为直接测量和间接测量, 间接测量中有一类方法基于数字相机照片提取冠层孔隙率, 再用有限长度平均法同时估算LAI和聚集指数。然而, 有限长度平均法自提出以来缺少进一步的发展, 在有限长度的样线/样方上应用比尔定律的方式具有理论缺陷, 可能造成无效值或高估LAI。从模拟的训练数据中提取经验公式以取代比尔定律进行样线/样方的LAI估算, 提高了有限长度平均法的精度和鲁棒性。进一步分析在一定精度需求下对样线/样方大小和数量的要求, 对于非均匀样地, 提出样线长度为8倍等效叶片边长、样方边长为3倍等效叶片边长的推荐设置。在基于数字相机照片提取非均匀样地LAI的应用中, 使用样方采样比样线采样更为适宜。

本文引用格式

刘强, 蔡二丽, 张嘉琳, 宋翘, 李秀红, 窦宝成 . 叶面积指数田间测量中有限长度平均法的改进[J]. 植物学报, 2018 , 53(5) : 671 -685 . DOI: 10.11983/CBB17083

Abstract

Measuring leaf area index (LAI) in the field is a common task in ecological and agricultural studies. There are direct and indirect methods for the task. One of the frequently used indirect methods is to acquire a digital photo of the vegetation canopy and extract the area ratio of green leaf, then simultaneously estimate LAI and clumping index with the finite-length averaging method proposed by Lang and Xiang (1986). However, the finite-length averaging method still needs improvement. For example, using Beer’s law for estimating leaf area in the sample’s line of finite length is theoretically incompatible with its basic assumption of heterogeneous canopy, resulting in over-estimation or even invalid value of the calculated LAI. Thus, this study proposed empirical formulas to replace Beer’s law in characterizing the relation between gap ration and LAI in the sample line (or sample square) based on computer simulations. The new formulas correct the shortcomings of over-estimation and instability of Beer’s law when the canopy is dense and the length of sample line (or sample square) is short. Then, the optimal setting for the length of sample line (or sample square) in a heterogeneous field is discussed: the length of 8 times an equivalent leaf length for sample line and 3 times an equivalent leaf length for a sample square were recommended in most cases of crop or grass scenes. As well, a sample square was superior to a sample line in applications estimating LAI of a heterogeneous field.

参考文献

1 王锦地, 张戈, 肖月庭, 屈永华 (2007). 基于地物波谱库构造农作物生长参数的时空分布先验知识. 北京师范大学学报(自然科学版) 43, 284-291.
2 吴朝阳, 牛铮 (2008). 基于辐射传输模型的高光谱植被指数与叶绿素浓度及叶面积指数的线性关系改进. 植物学通报 25, 714-721.
3 杨贵军, 黄文江, 王纪华, 邢著荣 (2010). 多源多角度遥感数据反演森林叶面积指数方法. 植物学报 45, 566-578.
4 姚延娟, 范闻捷, 刘强, 李丽, 陶欣, 辛晓洲, 柳钦火 (2010). 玉米全生长期叶面积指数收获测量法的改进. 农业工程学报26(8), 189-194.
5 Baret F, De Solan B, Lopez-Lozano R, Ma K, Weiss M (2010). GAI estimates of row crops from downward looking digital photos taken perpendicular to rows at 57.5° zenith angle: theoretical considerations based on 3D architecture models and application to wheat crops.Agric Forest Meteor 150, 1393-1401.
6 Chen JM, Cihlar J (1995). Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index.Appl Opt 34, 6211-6222.
7 Guo QH, Wu FF, Pang SX, Zhao XQ, Chen LH, Liu J, Xue BL, Xu GC, Li L, Jing HC, Chu CC (2016). Crop 3D: a platform based on LiDAR for 3D high-throughput crop phenotyping.Sci Sin Vitae 46, 1210-1221.
8 Hu RH, Yan GJ, Mu XH, Luo JH (2014). Indirect measurement of leaf area index on the basis of path length distribution.Remote Sens Environ 155, 239-247.
9 Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, Baret F (2004). Review of methods for in situ leaf area index determination: Part I. Theories, sensors and hemispherical photography. Agric Forest Meteor 121, 19-35.
10 Lang ARG, Xiang YQ (1986). Estimation of leaf area index from transmission of direct sunlight in discontinuous cano- pies.Agric Forest Meteor 37, 229-243.
11 Leblanc SG, Chen JM, Fernandes R, Deering DW, Conley A (2005). Methodology comparison for canopy structure parameters extraction from digital hemispherical photography in boreal forests.Agric Forest Meteor 129, 187-207.
12 Li XH, Liu Q, Yang RJ, Zhang HJ, Zhang JL, Cai EL (2015). The design and implementation of the leaf area index sensor.Sensors 15, 6250-6269.
13 Liu JG, Pattey E (2010). Retrieval of leaf area index from top-of-canopy digital photography over agricultural crops.Agric Forest Meteor 150, 1485-1490.
14 Liu YK, Mu XH, Wang HX, Yan GJ (2012). A novel method for extracting green fractional vegetation cover from digital images.J Veg Sci 23, 406-418.
15 Myneni RB, Hoffman S, Knyazikhin Y, Privette JL, Glassy J, Tian Y, Wang Y, Song X, Zhang Y, Smith GR, Lotsch A, Friedl M, Morisette JT, Votava P, Nemani RR, Running SW (2002). Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data.Remote Sens Environ 83, 214-231.
16 Piayda A, Dubbert M, Werner C, Correia AV, Pereira JS, Cuntz M (2015). Influence of woody tissue and leaf clum- ping on vertically resolved leaf area index and angular gap probability estimates.Forest Ecol Manage 340, 103-113.
17 Wang HX, Zhang WM, Zhou GQ, Yan GJ, Clinton N (2009). Image-based 3D corn reconstruction for retrieval of geometrical structural parameters.Int J Remote Sens 30, 5505-5513.
18 Weiss M, Baret F, Smith GJ, Jonckheere I, Coppin P (2004). Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and samp- ling. Agric Forest Meteor 121, 37-53.
19 Woodgate W, Disney M, Armston JD, Jones SD, Suarez L, Hill MJ, Wilkes P, Soto-Berelov M, Haywood A, Mellor A (2015). An improved theoretical model of canopy gap probability for leaf area index estimation in woody ecosys- tems.Forest Ecol Manage 358, 303-320.
20 Xiao ZQ, Liang SL, Wang JD, Chen P, Yin XJ, Zhang LQ, Song JL (2014). Use of general regression neural networks for generating the glass leaf area index product from time-series MODIS surface reflectance.IEEE Trans Geosci Remote Sens 52, 209-223.
21 Xu XR, Fan WJ, Tao X (2009). The spatial scaling effect of continuous canopy leaves area index retrieved by remote sensing.Sci China Ser D: Earth Sci 52, 393-401.
文章导航

/