热点评

RNA 解旋酶调控rRNA内稳态: 水稻耐热 新机制、分子育种新资源

展开
  • 1中国水稻研究所, 水稻生物学国家重点实验室, 杭州 310006
    2中国农业科学院深圳农业基因组研究所, 深圳 518120
? 共同第一作者

收稿日期: 2016-04-04

  录用日期: 2016-04-26

  网络出版日期: 2016-05-24

DEAD-box RNA Helicase Regulate rRNA Homeostasis: New Mechanism on Rice Thermotolerance, New Prospective on Rice Molecular Breeding

Expand
  • 1State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
    2Agriculture Genome Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
? These authors contributed equally to this paper

Received date: 2016-04-04

  Accepted date: 2016-04-26

  Online published: 2016-05-24

摘要

高温热害是影响水稻(Oryza sativa)产量形成的重要限制因子。DEAD-box RNA解旋酶在核糖体RNA前体加工及植物抗逆中扮演着重要角色。最近, 中国科学家在DEAD-box RNA解旋酶调控水稻耐热性分子机理研究方面取得了突破性进展。

本文引用格式

胡时开, 钱前 . RNA 解旋酶调控rRNA内稳态: 水稻耐热 新机制、分子育种新资源[J]. 植物学报, 2016 , 51(3) : 283 -286 . DOI: 10.11983/CBB16070

Abstract

High temperature stress is a significant factor limiting rice growth and yield formation. DEAD-box RNA helicase plays a vital role in the processing of pre-rRNA and plant stresses response. Recently, Chinese scientists have great progress in the molecular mechanism of regulating thermo-tolerant of DEAD-box RNA helicase in rice.

参考文献

[1] Amin M, Elias S, Hossain A, Ferdousi A, Rahman M, Tuteja N, Seraj Z (2012). Over-expression of a DEAD- box helicase, PDH45, confers both seedling and reproductive stage salinity tolerance to rice (Oryza sativa L.).Mol Breed 30, 345-354.
[2] Bita C, Gerats T (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops.Front Plant Sci 4, 273.
[3] Challinor A, Watson J, Lobell D, Howden S, Smith D, Chhetri N (2014). A meta-analysis of crop yield under climate change and adaptation.Nat Clim Chang 4, 287-291.
[4] Chen Y, Potratz J, Tijerina P, Del Campo M, Lambowitz A, Russell R (2008). DEAD-box proteins can completely separate an RNA duplex using a single ATP.Proc Natl Acad Sci USA 105, 20203-20208.
[5] Cordin O, Banroques J, Tanner N, Linder P (2006). The DEAD-box protein family of RNA helicases.Gene 367, 17-37.
[6] Dragon F, Gallagher J, Compagnone-Post P, Mitchell B, Porwancher K, Wehner K, Wormsley S, Settlage R, Shabanowitz J, Osheim Y, Beyer A, Hunt DF, Baserga S (2002). A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis.Nature 417, 967-970.
[7] Gong Z, Dong C, Lee H, Zhu J, Xiong L, Gong D, Stevenson B, Zhu J (2005). A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis.Plant Cell 17, 256-267.
[8] Gong Z, Lee H, Xiong L, Jagendorf A, Stevenson B, Zhu J (2002). RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance.Proc Natl Acad Sci USA 99, 11507-11512.
[9] Granneman S, Bernstein K, Blelchert F, Baserga S (2006). Comprehensive mutational analysis of yeast DEXD/H box RNA helicases required for small ribosomal subunit synthesis.Mol Cell Biol 26, 1183-1194.
[10] Kang H, Park S, Kwak K (2012). Plant RNA chaperones in stress response.Trends Plant Sci 18, 100-106.
[11] Kim J, Kim K, Oh T, Park C, Kang H (2008). Functional characterization of DEAD-box RNA helicases in Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiol 49, 1563-1571.
[12] Li X, Chao D, Wu Y, Huang X, Chen K, Cui L, Su L, Ye W, Chen H, Chen H, Dong N, Guo T, Shi M, Feng Q, Zhang P, Han B, Shan J, Gao J, Lin H (2015). Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice.Nat Genet 47, 827-833.
[13] Linder P, Owttrim G (2009). Plant RNA helicases: linking aberrant and silencing RNA.Trends Plant Sci 14, 344-352.
[14] Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, Xiao J, Guo X, Xu S, Niu Y, Jin J, Zhang H, Xu X, Li L, Wang W, Qian Q, Ge S, Chong K (2015). COLD1 confers chilling tolerance in rice.Cell 160, 1209-1221.
[15] Macovei A, Tuteja N (2012). MicroRNAs targeting DEAD- box helicases are involved in salinity stress response in rice (Oryza sativa L.).BMC Plant Biol 12, 183.
[16] McClung C, Davis S (2010). Ambient thermometers in plants: from physiological outputs towards mechanisms of thermal sensing.Curr Biol 20, R1086-R1092.
[17] Mittler R, Finka A, Goloubinoff P (2012). How do plants feel the heat?Trends Biochem Sci 37, 118-125.
[18] Owttrim G (2006). RNA helicases and abiotic stress.Nucleic Acids Res 34, 3220-3230.
[19] Owttrim G (2013). RNA helicases: diverse roles in prokaryotic response to abiotic stress.RNA Biol 1, 96-110.
[20] Pyle A (2008). Translocation and unwinding mechanisms of RNA and DNA helicases.Annu Rev Biophys 37, 317-336.
[21] Ray D, Gerber J, MacDonald G, West P (2015). Climate variation explains a third of global crop yield variability.Nat Commun 6, 5989.
[22] Shen H, Zhong X, Zhao F, Wang Y, Yan B, Li Q, Chen G, Mao B, Wang J, Li Y, Xiao G, He Y, Xiao H, Li J, He Z (2015). Overexpression of receptor-like kinase ERECTA improves thermotolerance in rice and tomato.Nat Biotechnol 33, 996-1003.
[23] Tuteja N, Sahoo R, Garg B, Tuteja R (2013). OsSUV3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. ‘IR64’).Plant J 76, 115-127.
[24] Umate P, Tuteja R, Tuteja N (2010). Genome-wide analysis of helicase gene family from rice and Arabidopsis: a comparison with yeast and human.Plant Mol Biol 73, 449-465.
[25] Venema J, Tollervey D (1995). Processing of pre-ribosomal RNA in Saccharomyces cerevisiae.Yeast 11, 1629-1650.
[26] Wahid A, Gelani S, Ashraf M, Foolad M (2007). Heat tolerance in plants: an overview.Environ Exp Bot 61, 199-223.
[27] Wang D, Qin B, Li X, Tang D, Zhang Y, Cheng Z, Xue Y (2016). Nucleolar DEAD-Box RNA helicase TOGR1 re- gulates thermotolerant growth as a pre-rRNA chaperone in rice.PLoS Genet 12, e1005844.
文章导航

/

674-3466/bottom_cn.htm"-->