研究报告

新围垦盐土地三种人工林群落细根生物量及其影响因素分析

展开
  • 1华东师范大学, 地球科学部地理科学学院, 上海市城市化生态过程与生态恢复重点实验室, 上海 200241
    2贵州工程应用技术学院生态工程学院, 毕节 551700
    3上海港城生态园林有限公司, 上海 201306

? 共同第一作者

收稿日期: 2015-06-14

  录用日期: 2015-09-21

  网络出版日期: 2016-05-24

基金资助

浦东新区科委承建环保类创新项目(No.>pkj2013-c05)和上海市重大科技攻关项目(No.09DZ1200900)

Fine Root Biomass and Morphological Characteristics in Three Different Artificial Forest Communities in Newly Reclaimed Saline Soil

Expand
  • 1Shanghai Key Laboratory Urban Ecological Processes and Eco-Restoration, School of Geographic Sciences, Faculty of Earth Sciences, East China Normal University, Shanghai 200241
    2School of Ecological Engineering, Guizhou University of Engineering Science, Bijie 551700
    3Shanghai Harbour City Ecology Garden Co., LTD, Shanghai 201306, China

? These authors contributed equally to this paper

Received date: 2015-06-14

  Accepted date: 2015-09-21

  Online published: 2016-05-24

摘要

细根是植物吸收水分和养分的主要器官, 细根生物量对盐土地人工绿化植被生态修复具有重要意义。以3种人工林为研究对象, 分别对其细根生物量、垂直分布及各形态指标的变化特征进行分析。结果表明, 响叶杨(Populus adenopoda)林、普陀樟(Cinnamomum japonicum)林和落羽杉(Taxodium distichum)林0-40 cm土层的平均细根生物量分别为1 699.75、498.50和520.06 g·m-2。3种林分在0-10 cm土层中的细根生物量占整个细根生物量的50%以上, 随着土层的增加细根生物量呈现指数减少(P<0.05)。在生长季节内细根生物量呈双峰变化, 不同月份间存在显著差异。活细根生物量和比根长均表现为普陀樟林<落羽杉林<响叶杨林。将细根各项指标与3种环境因子进行相关分析, 发现土壤含水量与活细根生物量及根长密度呈显著正相关(P<0.01)。CCA分析表明, 土壤含盐量是影响活细根各项指标垂直变化的主要限制因子, 而高盐可能对细根生物量及分布有不利影响。

本文引用格式

江洪, 白莹莹, 饶应福, 陈冲, 蔡永立 . 新围垦盐土地三种人工林群落细根生物量及其影响因素分析[J]. 植物学报, 2016 , 51(3) : 343 -352 . DOI: 10.11983/CBB15103

Abstract

Fine root is the main organ of plants absorbing water and nutrients. Fine root biomass is important for restoring saline soil. We considered 3 plant communities along a saline reclamation riparian zone in the Lingang district of Shanghai and studied the variation in fine-root biomass, vertical distribution and morphological indicators of fine roots in salinity. The mean fine-root biomass in 3 communities (Populus adenopoda, Cinnamomum japonicum and Taxodium distichum forest) in the 0 to 40 cm soil layer were 1 699.75, 498.50 and 520.06 g·m-2, respectively. In the 3 forests, fine-root biomass was significantly affected by soil depth, and fine roots at the 0 to 10 cm soil layer accounted for more than 50% of the total fine-root biomass; with increasing soil layer, the fine-root biomass index decreased (P<0.05). The fine-root biomass of different communities showed existential bimodal changes in the growing season, with significant difference between months. The biomass and length of living fine roots were all decreased in the order of P. adenopoda> T. distichum>C. japonicum forest. We found a significant relation between soil moisture content and living fine-root biomass and density (P<0.01). CCA analysis showed that soil moisture content was the main limiting factor of change in various vertical indexes of live fine roots, and high salt may have an adverse effect on fine-root biomass and distribution.

参考文献

[1] 毕华松, 崔心红, 陈国霞, 蒯振桂, 朱守芬, 黄文振, 李国义, 魏凤巢 (2007). 上海临港新城滨海盐渍土壤年内盐水动态及其分析. 安徽农业科学 35, 11149-11151.
[2] 邴雷, 赵宝存, 沈银柱, 黄占景, 葛荣朝 (2008). 植物耐盐性及耐盐相关基因的研究进展. 河北师范大学学报(自然科学版) 32, 243-248.
[3] 陈万逸 (2012). 上海临港新城围垦区土地利用动态分析和湿地生态修复评价. 博士论文. 上海: 华东师范大学.
[4] 程云环, 韩有志, 王庆成, 王政权 (2005). 落叶松人工林细根动态与土壤资源有效性关系研究. 植物生态学报 29, 403-410.
[5] 董阳, 郝瑞军, 方海兰 (2008). 上海临港重装备区土壤盐分特征分析. 上海交通大学学报(农业科学版) 26, 578-583.
[6] 范泽鑫, 曹坤芳 (2005). 树木高生长限制的几个假说. 植物学通报 22, 632-640.
[7] 郭忠玲, 郑金萍, 马元丹, 韩士杰, 李庆康, 于贵瑞, 范春楠, 刘万德, 邵殿坤 (2006). 长白山几种主要森林群落木本植物细根生物量及其动态. 生态学报 26, 2855-2862.
[8] 何斌, 蔡永立, 冉雯瑞, 赵小雷 (2013). 人工植被对崇明东滩滨海盐土水盐空间异质性的影响. 应用生态学报 24, 2151-2158.
[9] 黄丽萍, 王立艳, 杨勇, 肖辉, 程文娟, 潘洁 (2014). 四种耐盐植物根际土壤盐分运移特征研究. 天津农业科学 20, 73-76.
[10] 贾淑霞, 赵妍丽, 丁国泉, 孙玥, 许旸, 王政权 (2010 ). 落叶松和水曲柳不同根序细根形态结构、组织氮浓度与根呼吸的关系. 植物学报 45, 174-181.
[11] 贾彦博, 杨肖娥, 刘建祥 (2005). 植物根系对养分缺乏和毒害的适应及其与养分吸收效率的关系. 土壤通报 35, 610-616.
[12] 金钊, 杨玉盛, 董云社, 齐玉春, 陈光水 (2006). 米槠与杉木细根凋落物是否在自身群落中分解得更快? 植物学通报 23, 651-657.
[13] 梅莉, 王政权, 张秀娟, 于立忠, 杜英 (2008). 施氮肥对水曲柳人工林细根生产和周转的影响. 生态学杂志 27, 1663-1668 .
[14] 权伟, 徐侠, 王丰, 汪家社, 方燕鸿, 阮宏华, 余水强 (2008). 武夷山不同海拔高度植被细根生物量及形态特征. 生态学杂志 27, 1095-1103.
[15] 王珺, 刘茂松, 盛晟, 徐驰, 刘小恺, 王汉 (2008). 干旱区植物群落土壤水盐及根系生物量的空间分布格局. 生态学报 28, 4120-4127 .
[16] 王韦韦, 黄锦学, 陈锋, 熊德成, 卢正立, 黄超超, 杨智杰, 陈光水 (2014). 树种多样性对亚热带米槠林细根生物量和形态特征的影响. 应用生态学报 25, 318-324.
[17] 温达志, 魏平, 孔国辉, 叶万辉 (1999). 鼎湖山南亚热带森林细根生产力与周转. 植物生态学报 23, 361-369.
[18] 吴淑杰, 韩喜林, 李淑珍 (2003). 土壤结构、水分与植物根系对土壤能量状态的影响. 东北林业大学学报 31, 24-26.
[19] 燕辉, 苏印泉, 朱昱燕, 张景群 (2009). 秦岭北坡杨树人工林细根分布与土壤特性的关系. 南京林业大学学报(自然科学版) 33, 85-89.
[20] 杨秀云, 韩有志, 张芸香 (2008). 距树干不同距离处华北落叶松人工林细根生物量分布特征及季节变化. 植物生态学报 32, 1277-1284.
[21] 张群, 崔心红, 夏檑, 朱义, 张庆费 (2008). 上海临港新城近60a筑堤区域植被与土壤特征. 浙江林学院学报 25, 698-704.
[22] 赵可夫, 范海 (2005). 盐生植物及其对盐渍生境的适应生理. 北京: 科学出版社.
[23] Ashraf M, Harris PJC (2004). Potential biochemical indica- tors of salinity tolerance in plants.Plant Sci 166, 3-16.
[24] Burton AJ, Pregitzer KS, Hendrick RL (2000). Relation- ships between fine root dynamics and nitrogen availability in Michigan northern hardwood forest.Oecologia 125, 389-399.
[25] Chirinda N, Roncossek SD, Heckrath G, Elsgaard L, Thomsen IK, Olesen JE (2014). Root and soil carbon distribution at shoulderslope and footslope positions of temperate toposequences cropped to winter wheat.Ca- tena 123, 99-105.
[26] Grady APO, Wodedge D, Battaglia M (2005).Temporal and spatial changes in fine root distributions in a young Eucalyptus globulus stand in southern Tasmania.For Ecol Manage 214, 373-383
[27] Hahn G, Marschner H (1998). Cation concentration of short roots of Norway spruce as affected by acid irrigation and liming.Plant Soil 199, 23-27.
[28] He B, Cai YL, Ran WR, Jiang H (2014). Spatial and sea- sonal variations of soil salinity following vegetation restoration in coastal saline land in eastern China.Catena 118, 147-153.
[29] Hulugalle NR, Broughton KJ, Tan DKY (2015).Fine root production and mortality in irrigated cotton, maize and sorghum sown in vertisols of northern New South Wales, Australia.Soil Tillage Res 146, 313-322.
[30] Imada S, Yamanaka N, Tamai S (2008). Water table depth affects Populus alba fine root growth and whole plant biomass.Funct Ecol 22, 1018-1026.
[31] Kramer PJ, Boyer JS (1995). Water relations of plants and soils. San Diego, New York: Academic Press.
[32] Leena F, Mizue O, Kyotaro N, Yasuhiro H (2011). Factors causing variation in fine root biomass in forest ecosys- tems.For Ecol Manage 261, 265-277.
[33] Liao YC, McCormack ML, Fan HB, Wang HM, Wu JP, Tu J, Liu WF, Guo DL (2014). Relation of fine root distribution to soil C in a Cunninghamia lanceolata plantation in subtropical China.Plant Soil 381, 225-234.
[34] López B, Sabaté S, Gracia CA (2001). Annual and sea- sonal changes in fine root biomass of Quercusilex L.Plant Soil 230, 125-134.
[35] Ma C, Zhang WH, Wu M, Xue YQ, Ma LW, Zhou JY (2013). Effect of aboveground intervention on fine root mass, production, and turnover rate in a Chinese cork oak (Quercus variabilis Blume) forest.Plant Soil 368, 201-214.
[36] Riley D, Barber SA (1970). Salt accumulation at the soybean Giycine max (L.) Merr. root soil interface.Soil Sci Soc Am J 34, 154-155.
[37] Sophie G, Dietiech H, Chrstoph L (2008). Fine root dyn- amics along a 2 000 m elevation transect in South Ecua- dorian mountain rainforests.Plant Soil 313, 155-166.
[38] Turkey C (2012). Effects of drought and salt stresses on growth, stomatal conductance, leaf water and osmotic potentials of melon genotypes (Cucumis melo L.).Afr J Agric Res 7, 775-781.
[39] Wang QC (2002). Spatial distribution of fine roots of larch and ash in the mixed plantation stand.J For Res 13, 265-268.
[40] Zhu JK (2001). Plant salt tolerance.Trends Plant Sci 6, 66-71.
文章导航

/