研究报告

非洲菊微管相关蛋白基因GMAP65-1功能分析

展开
  • 华南师范大学生命科学学院, 广东省植物发育生物工程重点实验室, 广州 510631

收稿日期: 2014-03-14

  修回日期: 2014-11-01

  网络出版日期: 2015-04-09

基金资助

国家自然科学基金(No.31372099)、教育部高等学校博士学科点专项科研基金(No.20104407110005)和广东省自然科学基金(No.9251063101000002)

Preliminary Functional Analysis of Microtubule-associated Protein GMAP65-1 from Gerbera hybrida

Expand
  • Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China

Received date: 2014-03-14

  Revised date: 2014-11-01

  Online published: 2015-04-09

摘要

微管相关蛋白在植物生长发育过程中发挥重要作用。利用反转录聚合酶链式反应(RT-PCR)和快速扩增cDNA末端(RACE)技术对非洲菊(Gerbera hybrida)体内微管相关蛋白GMAP65-1基因进行了克隆, 获得的基因全长1 883 bp, 包含 1 740 bp的完整开放阅读框(ORF)。表达模式研究表明, 该基因在非洲菊幼嫩的根、叶及花中均有较高的表达, 且受到赤霉素(GA)诱导显著上调。构建GMAP65-1超表达载体, 经异源转化拟南芥(Arabidopsis thaliana)后筛选获得纯合株系, 对纯合株系进行表型观察。结果表明, GMAP65-1超表达植株的叶片及花瓣面积增大, 暗示该基因参与叶片及花瓣的形态建成。研究结果为花卉分子育种提供了理论依据及基因资源。

本文引用格式

李凌飞, 彭建宗, 王小菁 . 非洲菊微管相关蛋白基因GMAP65-1功能分析[J]. 植物学报, 2015 , 50(1) : 12 -21 . DOI: 10.3724/SP.J.1259.2015.00012

Abstract

Microtubule-associated proteins play vital roles in plant growth and development. We cloned a full cDNA encoding microtubule-associated protein GMAP65-1 by RT-PCR and RACE techniques and characterized the clone. The complete cDNA (1 883 bp) contains a 1 740-bp open reading frame encoding 579 amino acid residues. The gene expression of GMAP65-1 was higher in young roots, leaves and ray florets. Moreover, its expression was induced by gibberellin. Overexpression of GMAP65-1 in transgenic Arabidopsis enlarged the area of leaf and petal. GMAP65-1 might be involved in leaf and petal morphogenesis. This study contributes to providing the theoretical basis and gene resources for flower molecular breeding of Gerbera.

参考文献

1 黄先忠, 蒋才富, 廖立力, 傅向东 (2006). 赤霉素作用机理的分子基础与调控模式研究进展. 植物学通报 23, 499-510.
2 任怡怡, 戴绍军, 刘炜 (2012). 生长素的运输及其在信号转导及植物发育中的作用. 生物技术通报 (3), 9-16.
3 张丽丽 (2011). 非洲菊花瓣形态建成的研究. 博士论文. 广州: 华南师范大学. pp. 19-37.
4 Achard P, Baghour M, Chapple A, Hedden P, Van Der Straeten D, Genschik P, Moritz T, Harberd NP (2007). The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc Natl Acad Sci USA 104, 6484-6489.
5 Achard P, Gusti A, Cheminant S, Alioua M, Dhondt S, Coppens F, Beemster GT, Genschik P (2009). Gibberellin signaling controls cell proliferation rate in Arabidopsis. Curr Biol 19, 1188-1193.
6 Ambrose C, Ruan Y, Gardiner J, Tamblyn LM, Catching A, Kirik V, Marc J, Overall R, Wasteneys GO (2013). CLASP interacts with sorting nexin 1 to link microtubules and auxin transport via PIN2 recycling in Arabidopsis thaliana . Dev Cell 24, 649-659.
7 Broholm SK, Tähtiharju S, Laitinen RAE, Albert VA, Teeri TH, Elomaa P (2008). A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescence. Proc Natl Acad Sci USA 105, 9117-9122.
8 Chan J, Jensen CG, Jensen LCW, Bush M, Lloyd CW (1999). The 65-kDa carrot microtubule-associated protein forms regularly arranged filamentous cross-bridges between microtubules. Proc Natl Acad Sci USA 96, 14931-14936.
9 Chan J, Mao GJ, Smertenko A, Hussey PJ, Naldrett M, Bottrill A, Lloyd CW (2003). Identification of a MAP65 isoform involved in directional expansion of plant cells. FEBS Lett 534, 161-163.
10 Clough SJ, Bent AF (1998). Floral dip: a simplified method for Agrobacterium -mediated transformation of Arabidop- sis thaliana . Plant J 16, 735-743.
11 Davis SJ (2009). Integrating hormones into the floral- transition pathway of Arabidopsis thaliana . Plant Cell Environ 32, 1201-1210.
12 Domagalska MA, Sarnowska E, Nagy F, Davis SJ (2010). Genetic analyses of interactions among gibberellin, abscisic acid, and brassinosteroids in the control of flowering time in Arabidopsis thaliana . PLoS One 5, e14012.
13 Fache V, Gaillard J, Van Damme D, Geelen D, Neumann E, Stoppin-Mellet V, Vantard M (2010). Arabidopsis kinetochore fiber-associated MAP65-4 cross-links micro- tubules and promotes microtubule bundle elongation. Plant Cell 22, 3804-3815.
14 Gaillard J, Neumann E, Van Damme D, Stoppin-Mellet V, Ebel C, Barbier E, Geelen D, Vantard M (2008). Two microtubule-associated proteins of Arabidopsis MAP65s promote antiparallel microtubule bundling. Mol Biol Cell 19, 4534-4544.
15 Gardiner J (2013). The evolution and diversification of plant microtubule-associated proteins. Plant J 75, 219-229.
16 Hou ZX, Huang WD (2005). Immunohistochemical localiza- tion of IAA and ABP1 in strawberry shoot apexes during floral induction. Planta 222, 678-687.
17 Jiang CJ, Sonobe S (1993). Identification and preliminary characterization of a 65 kDa higher-plant microtubule- associated protein. J Cell Sci 105, 891-901.
18 Kakar K, Zhang HT, Scheres B, Dhonukshe P (2013). CLASP-mediated cortical microtubule organization guides PIN polarization axis. Nature 495, 529-533.
19 Krajnčič B, Nemec J (2003). Mechanisms of EDDHA effects on the promotion of floral induction in the long-day plant Lemna minor (L.). J Plant Physiol 160, 143-151.
20 Kuang Q, Li LF, Peng JZ, Sun SL, Wang XJ (2013). Transcriptome analysis of Gerbera hybrida ray florets: putative genes associated with gibberellin metabolism and signal transduction. PLoS One 8, e57715.
21 Li JH, Li YH, Chen SY, An LZ (2010). Involvement of brassinosteroid signals in the floral-induction network of Arabidopsis. J Exp Bot 61, 4221-4230.
22 Lucas JR, Courtney S, Hassfurder M, Dhingra S, Bryant A, Shaw SL (2011). Microtubule-associated proteins MAP65-1 and MAP65-2 positively regulate axial cell growth in etiolated Arabidopsis hypocotyls. Plant Cell 23, 1889-1903.
23 Lucas JR, Shaw SL (2012). MAP65-1 and MAP65-2 promote cell proliferation and axial growth in Arabidopsis roots. Plant J 71, 454-463.
24 Mao GJ, Buschmann H, Doonan JH, Lloyd CW (2006). The role of MAP65-1 in microtubule bundling during Zinnia tracheary element formation. J Cell Sci 119, 753-758.
25 Mao TL, Jin LF, Li H, Liu B, Yuan M (2005). Two microtubule-associated proteins of the Arabidopsis MAP65 family function differently on microtubules. Plant Physiol 138, 654-662.
26 Meng QT, Du JZ, Li JJ, Lü XM, Zeng XA, Yuan M, Mao TL (2010). Tobacco microtubule-associated protein, MAP65- 1c, bundles and stabilizes microtubules. Plant Mol Biol 74, 537-547.
27 Meng XC, Wang XJ (2004). Regulation of flower devel- opment and anthocyanin accumulation in Gerbera hybrida . J Hortic Sci Biotech 79, 131-137.
28 Nick P (2012). Microtubules and the tax payer. Protoplasma 249, 81-94.
29 Panteris E, Komis G, Adamakis IDS, Samaj J, Bos- abalidis AM (2010). MAP65 in tubulin/colchicine paracry- stals of Vigna sinensis root cells: possible role in the assembly and stabilization of atypical tubulin polymers. Cytoskeleton ( Hoboken ) 67, 152-160.
30 Razem FA, Baron K, Hill RD (2006). Turning on gibberellin and abscisic acid signaling. Curr Opin Plant Biol 9, 454- 459.
31 Riboni M, Galbiati M, Tonelli C, Conti L (2013). GIGAN- TEA enables drought escape response via abscisic acid-dependent activation of the florigens and SUPPRE- SSOR OF OVEREXPRESSION OF CONSTANS . Plant Physiol 162, 1706-1719.
32 Schuyler SC, Liu JY, Pellman D (2003). The molecular function of Ase1p: evidence for a MAP-dependent midzone-specific spindle matrix. Microtubule-associated proteins. J Cell Biol 160, 517-528.
33 Sedbrook JC (2004). MAPs in plant cells: delineating microtubule growth dynamics and organization. Curr Opin Plant Biol 7, 632-640.
34 Sedbrook JC, Kaloriti D (2008). Microtubules, MAPs and plant directional cell expansion. Trends Plant Sci 13, 303- 310.
35 Shimada A, Yamane H, Kimura Y (2005). Interaction between aspterric acid and indole-3-acetic acid on reproductive growth in Arabidopsis thaliana . Z Na- turforsch C 60, 572-576.
36 Smertenko A, Saleh N, Igarashi H, Mori H, Hauser-Hahn I, Jiang CJ, Sonobe S, Lloyd CW, Hussey PJ (2000). A new class of microtubule-associated proteins in plants. Nat Cell Biol 2, 750-753.
37 Smertenko AP, Chang HY, Wagner V, Kaloriti D, Fenyk S, Sonobe S, Lloyd C, Hauser MT, Hussey PJ (2004). The Arabidopsis microtubule-associated protein AtMAP65-1: molecular analysis of its microtubule bundling activity. Plant Cell 16, 2035-2047.
38 Thingnaes E, Torre S, Ernstsen A, Moe R (2003). Day and night temperature responses in Arabidopsis: effects on gibberellin and auxin content, cell size, morphology and flowering time. Ann Bot 92, 601-612.
39 Van Damme D, Van Poucke K, Boutant E, Ritzenthaler C, Inzé D, Geelen D (2004). In vivo dynamics and differential microtubule-binding activities of MAP65 proteins. Plant Physiol 136, 3956-3967.
40 Zhang LL, Li LF, Wu J, Peng JZ, Zhang LR, Wang XJ (2012a). Cell expansion and microtubule behavior in ray floret petals of Gerbera hybrida : responses to light and gibberellic acid. Photochem Photobiol Sci 11, 279-288.
41 Zhang Q, Lin F, Mao TL, Nie JN, Yan M, Yuan M, Zhang WH (2012b). Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in Arabidopsis. Plant Cell 24, 4555-4576.
42 Zhu Y, Zuo MX, Liang YL, Jiang MY, Zhang JH, Scheller HV, Tan MP, Zhang AY (2013). MAP65-1a positively regulates H 2 O 2 amplification and enhances brassinos- teroid-induced antioxidant defence in maize. J Exp Bot 64, 3787-3802.
文章导航

/

674-3466/bottom_cn.htm"-->