研究报告

黄金树B类MADS-box基因表达特征分析

  • 景丹龙 ,
  • 夏燕 ,
  • 张守攻 ,
  • 王军辉
展开
  • 中国林业科学研究院林业研究所, 国家林业局林木培育重点实验室, 国家林木种质资源平台, 北京 100091
*E-mail: wangjh@caf.ac.cn

收稿日期: 2015-03-12

  录用日期: 2015-07-14

  网络出版日期: 2016-03-31

基金资助

十二五国家科技支撑项目(2012BAD21B03)

Expression Analysis of B-class MADS-box Genes from Catalpa speciosa

  • Danlong Jing ,
  • Yan Xia ,
  • Shougong Zhang ,
  • Junhui Wang
Expand
  • Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, China Forest Genetic Resource, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China

Received date: 2015-03-12

  Accepted date: 2015-07-14

  Online published: 2016-03-31

摘要

采用同源克隆技术, 从黄金树(Catalpa speciosa)花芽中克隆得到B类MADS-box基因CaspAP3CaspPI的cDNA序列。序列分析表明, CaspAP3基因cDNA序列的完整开放阅读框(ORF)为696 bp, 编码231个氨基酸残基; CaspPI基因cDNA序列的ORF为639 bp, 编码212个氨基酸残基。蛋白质序列相似性比对和分子系统发生分析表明, CaspAP3属于AP3/DEF进化支, 其C末端包含保守的euAP3基序和PI-derived基序, 而CaspPI聚类于PI/GLO进化支, 其C末端包含保守的PI基序。半定量RT-PCR分析结果表明, CaspAP3CaspPI基因均仅在花瓣和雄蕊中表达。实时荧光定量PCR分析表明, CaspAP3CaspPI基因在花瓣和雄蕊原基分化期至成熟期均有表达, 这2个基因在雄蕊中表达高峰出现的时间均早于花瓣; 且花瓣中的CaspAP3CaspPI基因表达高峰均出现在快速伸长阶段; 这与花瓣和雄蕊的形态发育阶段相吻合。

本文引用格式

景丹龙 , 夏燕 , 张守攻 , 王军辉 . 黄金树B类MADS-box基因表达特征分析[J]. 植物学报, 2016 , 51(2) : 210 -217 . DOI: 10.11983/CBB15053

Abstract

The cDNA sequence of B-class MADS-box genes CaspAP3 and CaspPI involved in flower development were isolated from the flower bud of Catalpa speciosa by homology cloning. The open reading frame (ORF) of CaspAP3 was 696 bp, encoding 231 amino acids, and the ORF of CaspPI was 639 bp, encoding 212 amino acids. Molecular phylogeny analysis and protein sequence alignment suggested that CaspAP3 groups with the AP3/DEF lineages and the C domain of CaspAP3 contained two conserved motifs, euAP3 and PI-derived motifs. However, CaspPI grouped with the PI/GLO lineages, and the C domain of CaspPI contained a conserved PI motif. CaspAP3 and CaspPI mRNA expression was mainly concentrated in petals and stamens but occurred at the primordium to mature stages of petals and stamens during morphological differentiation of organs. The expression of both factors peaked earlier in stamens than in petals, and the peak expression for both in petals appeared at the stage of rapid elongation. Meanwhile, the time of expression was the same with morphological differentiation of petals and stamens.

参考文献

[1] 陈晓 (2002). 黄金树及其在北京的园林应用价值. 北京园林 18, 24-25.
[2] 陈旭辉, 江莎, 古松, 许珂, 王永周, 丁锐, 黄俊哲 (2009). 黄金树花器官发生及发育的形态观察. 园艺学报 36, 285-290.
[3] 李利平, 刘海燕, 陈发菊 (2013). 黄金树大、小孢子发生及雌、雄配子体发育的细胞学观察. 植物研究 33, 145-148.
[4] 张冰玉, 苏晓华, 周祥明 (2008). 林木花发育的基因调控. 植物学通报 25, 476-482.
[5] Bowman JL (1997). Evolutionary conservation of angiosperm flower development at the molecular and genetic levels. J Biosci 22, 515-527.
[6] Chen MK, Hsieh WP, Yang CH (2012). Functional analysis reveals the possible role of the C-terminal sequences and PI motif in the function of lily (Lilium longiflorum) PISTILLATA (PI) orthologues. J Exp Bot 63, 941-961.
[7] Endress PK (2011). Evolutionary diversification of the flowers in angiosperms. Am J Bot 98, 370-396.
[8] Goto K, Meyerowitz EM (1994). Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev 8, 1548-1560.
[9] Hernández-Hernández T, Martínez-Castilla LP, Alvarez- Buylla ER (2007). Functional diversification of B MADS- box homeotic regulators of flower development: adaptive evolution in protein-protein interaction domains after major gene duplication events. Mol Biol Evol 24, 465-481.
[10] Jack T, Brockman LL, Meyerowitz EM (1992). The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68, 683-697.
[11] Jing D, Liu Z, Zhang B, Ma J, Han Y, Chen F (2014). Two ancestral APETALA3homologs from the basal angiosperm Magnolia wufengensis (Magnoliaceae) can affect flower development of Arabidopsis. Gene 537, 100-107.
[12] Jing D, Xia Y, Chen F, Wang Z, Zhang S, Wang J (2015). Ectopic expression of a Catalpa bungei (Bignoniaceae) PISTILLATA homologue rescues the petal and stamen identities in Arabidopsis pi-1 mutant. Plant Sci 231, 40-51.
[13] Jones DT, Taylor WR, Thornton JM (1992). The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8, 275-282.
[14] Kim S, Koh J, Yoo MJ, Kong H, Hu Y, Ma H, Soltis PS, Soltis DE (2005). Expression of floral MADS-box genes in basal angiosperms: implications on evolution of floral regulators and the perianth. Plant J 43, 724-744.
[15] Kim S, Yoo MJ, Albert VA, Farris JS, Soltis PS, Soltis DE (2004). Phylogeny and diversification of B-function MADS- box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication. Am J Bot 91, 2102-2118.
[16] Kramer EM, Di Stilio VS, Schluter PM (2003). Complex patterns of gene duplication in the APETALA3 and PISTILLATA lineages of the Ranunculaceae. Int J Plant Sci 164, 1-11.
[17] Kramer EM, Dorit RL, Irish VF (1998). Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149, 765-783.
[18] Krizek BA, Meyerowitz EM (1996). Mapping the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ-identity proteins. Proc Natl Acad Sci USA 93, 4063-4070.
[19] Kumar S, Nei M, Dudley J, Tamura K (2008). MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9, 299-306.
[20] Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402-408.
[21] Riechmann JL, Krizek BA, Meyerowitz EM (1996). Dimeri- zation specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AG- AMOUS. Proc Natl Acad Sci USA 93, 4793-4798.
[22] Soltis DE, Chanderbali AS, Kim S, Buzgo M, Soltis PS (2007). The ABC model and its applicability to basal angiosperms. Ann Bot 100, 155-163.
[23] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28, 2731-2739.
[24] Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Münster T, Winter KU, Saedler H (2000). A short history of MADS-box genes in plants. Plant Mol Biol 42, 115-149.
[25] Theissen G, Saedler H (2001). Plant biology—Floral quartets. Nature 409, 469-471.
[26] Thompson JD, Higgins DG, Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-4680.
[27] Viaene T, Vekemans D, Irish VF, Geeraerts A, Huysmans S, Janssens S, Smets E, Geuten K (2009). Pistillata- duplications as a mode for floral diversification in (Basal) asterids. Mol Biol Evol 26, 2627-2645.
文章导航

/