黄金树B类MADS-box基因表达特征分析
收稿日期: 2015-03-12
修回日期: 2015-07-05
网络出版日期: 2016-03-31
基金资助
十二五国家科技支撑项目(No.2012BAD21B03)
Expression Analysis of B-class MADS-box Genes from Catalpa speciosa
Received date: 2015-03-12
Revised date: 2015-07-05
Online published: 2016-03-31
采用同源克隆技术, 从黄金树(Catalpa speciosa)花芽中克隆得到B类MADS-box基因CaspAP3和CaspPI的cDNA序列。序列分析表明, CaspAP3基因cDNA序列的完整开放阅读框(ORF)为696 bp, 编码231个氨基酸残基; CaspPI基因cDNA序列的ORF为639 bp, 编码212个氨基酸残基。蛋白质序列相似性比对和分子系统发生分析表明, CaspAP3属于AP3/DEF进化支, 其C末端包含保守的euAP3基序和PI-derived基序, 而CaspPI聚类于PI/GLO进化支, 其C末端包含保守的PI基序。半定量RT-PCR分析结果表明, CaspAP3和CaspPI基因均仅在花瓣和雄蕊中表达。实时荧光定量PCR分析表明, CaspAP3和CaspPI基因在花瓣和雄蕊原基分化期至成熟期均有表达, 这2个基因在雄蕊中表达高峰出现的时间均早于花瓣; 且花瓣中的CaspAP3和CaspPI基因表达高峰均出现在快速伸长阶段; 这与花瓣和雄蕊的形态发育阶段相吻合。
景丹龙, 夏燕, 张守攻, 王军辉 . 黄金树B类MADS-box基因表达特征分析[J]. 植物学报, 2016 , 51(2) : 210 -217 . DOI: 10.11983/CBB15053
The cDNA sequence of B-class MADS-box genes CaspAP3 and CaspPI involved in flower development were isolated from the flower bud of Catalpa speciosa by homology cloning. The open reading frame (ORF) of CaspAP3 was 696 bp, encoding 231 amino acids, and the ORF of CaspPI was 639 bp, encoding 212 amino acids. Molecular phylogeny analysis and protein sequence alignment suggested that CaspAP3 groups with the AP3/DEF lineages and the C domain of CaspAP3 contained two conserved motifs, euAP3 and PI-derived motifs. However, CaspPI grouped with the PI/GLO lineages, and the C domain of CaspPI contained a conserved PI motif. CaspAP3 and CaspPI mRNA expression was mainly concentrated in petals and stamens but occurred at the primordium to mature stages of petals and stamens during morphological differentiation of organs. The expression of both factors peaked earlier in stamens than in petals, and the peak expression for both in petals appeared at the stage of rapid elongation. Meanwhile, the time of expression was the same with morphological differentiation of petals and stamens.
陈晓 (2002). 黄金树及其在北京的园林应用价值. 北京园林 18, 24–25.
陈旭辉, 江莎, 古松, 许珂, 王永周, 丁锐, 黄俊哲(2009). 黄金树花器官发生及发育的形态观察. 园艺学报, 36 (2), 285–290.
李利平, 刘海燕, 陈发菊(2013). 黄金树大、小孢子发生及雌、雄配子体发育的细胞学观察. 植物研究, 33 (2), 145–148.
Bowman JL (1997). Evolutionary conservation of angiosperm flower development at the molecular and genetic levels. J Biosci, 22, 515–527.
Chen MK, Hsieh WP, Yang CH (2012). Functional analysis reveals the possible role of the C-terminal sequences and PI motif in the function of lily (Lilium longiflorum) PISTILLATA(PI) orthologues, J. Exp. Bot. 63, 941–961.
Endress PK. (2011). Evolutionary diversification of the flowers in angiosperms. Am J Bot, 98(3), 370–396.
Hernández-Hernández T, Martínez-Castilla LP, Alvarez-Buylla ER (2007), Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein-protein interaction domains after major gene duplication events, Mol. Biol. Evol. 24, 465–481.
Goto K, Meyerowitz EM (1994). Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8, 1548–1560.
Jack T, Brockman LL, Meyerowitz EM. (1992).The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell, 68, 683–697.
Jones DT, Taylor WR, Thornton JM (1992). The rapid generation of mutation data matrices from protein sequences, Comput. Appl. Biosci. 8, 275–282.
Kim S, Yoo MJ, Albert VA, Farris JS, Soltis PS, Soltis DE (2004). Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication, Am. J. Bot. 91, 2102–2118.
Kim S, Koh J, Yoo MJ, Kong H, Hu Y, Ma H, Soltis PS, Soltis DE (2005). Expression of floral MADS-box genes in basal angiosperms: implications on evolution of floral regulators and the perianth. The Plant J., 43, 724–744.
Kramer EM, Dorit RL, Irish VF (1998). Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages, Genetics 149, 765–783.
Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2?ΔΔCT method. Methods, 25, 402–408.
Riechmann JL, Krizek BA, Meyerowitz E M (1996). Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc Natl Acad Sci USA, 93, 4793–4798.
Soltis DE, Chanderbali AS, Kim S, Buzgo M, Soltis PS (2007).The ABC Model and its Applicability to Basal Angiosperms. Ann Bot, 100, 155–163
Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Münster T, Winter KU, Saedler H (2000). A short history of MADS-box genes in plants, Plant Mol. Biol. 42 ,115–149.
Thompson JD, Higgins DG, Gibson TJ (1994). CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res, 22 (22), 4673–4680.
Theissen G, Saedler H (2001). Floral quartets. Nature, 409, 469–471.
Kramer EM, Di Stilio VS, Schluter PM (2003). Complex patterns of gene duplication in the APETALA3 and PISTILLATA lineages of the Ranunculaceae. Intl J Plant Sci., 164, 1–11.
Jing D, Liu Z, Zhang B, Ma J, Han Y, Chen F (2014). Two ancestral APETALA3 homologs from the basal angiosperm Magnolia wufengensis (Magnoliaceae) can affect flower development of Arabidopsis, Gene 537, 100–107.
Jing D, Xia Y, Chen F, Wang Z, Zhang S, Wang J (2015). Ectopic expression of a Catalpa bungei (Bignoniaceae) PISTILLATA homologue rescues the petal and stamen identities in Arabidopsis pi-1 mutant, Plant Science 231, 40–51.
Viaene T, Vekemans D, Irish VF, Geeraerts A, Huysmans S, Janssens S, Smets E, Geuten K (2009). Pistillata-duplications as a mode for floral diversification in (Basal) asterids. Mol Biol Evol. 26, 2627-2645.
/
〈 | 〉 |