专题论坛

植物成熟microRNA转录后修饰与降解的研究进展

展开
  • 1浙江农林大学亚热带森林培育国家重点实验室培育基地, 临安 311300
    2中国林业科学研究院林业研究所细胞生物学实验室, 北京 100091

收稿日期: 2013-12-23

  修回日期: 2014-04-23

  网络出版日期: 2014-08-08

基金资助

国家自然科学基金重点项目;国家自然科学基金

Research Advances in Post-transcriptional Modification and Degradation of Mature MicroRNAs in Plants

Expand
  • 1Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin’an 311300, China;

    2Laboratory of Cell Biology, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China

Received date: 2013-12-23

  Revised date: 2014-04-23

  Online published: 2014-08-08

摘要

microRNA(miRNA)是一类长度为20–24 nt的内源小RNA, 广泛存在于各种植物体内, 参与调控植物器官的形态建成、激素应答、逆境胁迫和营养代谢等一系列过程。虽然miRNA生物合成和功能研究已取得了很大进展, 但关于植物成熟miRNA的转录后修饰和降解的研究却报道较少。一方面miRNA如同其它RNA存在半衰期, 其降解对于调控细胞内miRNA含量起重要作用, 从而调控植物的生长发育或胁迫响应等过程; 另一方面, 成熟miRNA存在转录后修饰, 可影响miRNA的稳定性, 最终影响其活性。该文着重从植物成熟miRNA的转录后修饰和降解等方面进行了综述。

本文引用格式

张俊红, 张守攻, 齐力旺, 童再康 . 植物成熟microRNA转录后修饰与降解的研究进展[J]. 植物学报, 2014 , 49(4) : 483 -489 . DOI: 10.3724/SP.J.1259.2014.00483

Abstract

MicroRNAs (miRNAs) are a class of endogenous small RNA molecules, 20–24 nt, found in diverse plants. MiRNAs function as transcriptional and post-transcriptional regulators of gene expression. They play essential roles in developmental and physiological processes of plants, including organ morphogenesis, responses to hormones and environmental stresses, and nutrition metabolism. Although progresses have been made in the biosynthesis and functional identification of miRNAs in plants, post-transcriptional modification or degradation of miRNAs in plants remains elusive. On one hand, miRNAs will be degraded, which is crucial to control the miRNA content in cells, thus regulating the growth, development and stress response in plants. On the other hand, the post-transcriptional modification of mature miRNAs might be associated with miRNA stability. Several studies have demonstrated that adenylation increases miRNA stability, while uridylation boosts degradation. This review will focus on research progress in post-transcriptional modification and degradation of mature miRNAs in plants, hopefully to provide useful information for miRNA destiny in plants.

参考文献

张俊红, 张守攻, 吴涛, 韩素英, 杨文华, 齐力旺 (2012). 落叶松体胚发育中5个miRNA前体与成熟体的表达. 植物学报 47, 462–473.
Ameres SL, Horwich MD, Hung JH, Xu J, Ghildiyal M, Weng Z, Zamore PD (2010). Target RNA-directed trimming and tailing of small silencing RNAs. Science 328, 1534–1539.
Arvey A, Larsson E, Sander C, Leslie CS, Marks DS (2010). Target mRNA abundance dilutes microRNA and siRNA activity. Mol Syst Biol 6, 363.
Axtell MJ, Bartel DP (2005). Antiquity of microRNAs and their targets in land plants. Plant Cell 17, 1658–1673.
Baccarini A, Chauhan H, Gardner TJ, Jayaprakash AD, Sachidanandam R, Brown BD (2011). Kinetic analysis reveals the fate of a microRNA following target regulation in mammalian cells. Curr Biol 21, 369–376.
Bail S, Swerdel M, Liu H, Jiao X, Goff LA, Hart RP, Kiledjian M (2010). Differential regulation of microRNA stability. RNA 16, 1032–1039.
Baumberger N, Baulcombe DC (2005). Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A 102, 11928–11933.
Burroughs AM, Ando Y, de Hoon MJ, Tomaru Y, Nishibu T, Ukekawa R, Funakoshi T, Kurokawa T, Suzuki H, Hayashizaki Y, Daub CO (2010). A comprehensive survey of 3' animal miRNA modification events and a possible role for 3' adenylation in modulating miRNA targeting effectiveness. Genome Res 20, 1398–1410.
Cai X, Hagedorn CH, Cullen BR (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957–1966.
Chatterjee S, Grosshans H (2009). Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature 461, 546–549.
Chekanova JA, Gregory BD, Reverdatto SV, Chen H, Kumar R, Hooker T, Yazaki J, Li P, Skiba N, Peng Q, Alonso J, Brukhin V, Grossniklaus U, Ecker JR, Belostotsky DA (2007). Genome-wide high-resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome. Cell 131, 1340–1353.
Chen Y, Sinha K, Perumal K, Reddy R (2000). Effect of 3' terminal adenylic acid residue on the uridylation of human small RNAs in vitro and in frog oocytes. RNA 6, 1277–1288.
Diederichs S, Haber DA (2007). Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131, 1097–1108.
Estevez AM, Lehner B, Sanderson CM, Ruppert T, Clayton C (2003). The roles of intersubunit interactions in exosome stability. J Biol Chem 278, 34943–34951.
Fernandez-Valverde SL, Taft RJ, Mattick JS (2010). Dynamic isomiR regulation in Drosophila development. RNA 16, 1881–1888.
Floyd SK, Bowman JL (2004). Gene regulation: ancient microRNA target sequences in plants. Nature 428, 485–486.
Gatfield D, Le Martelot G, Vejnar CE, Gerlach D, Schaad O, Fleury-Olela F, Ruskeepaa AL, Oresic M, Esau CC, Zdobnov EM, Schibler U (2009). Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev 23, 1313–1326.
Ibrahim F, Rymarquis LA, Kim EJ, Becker J, Balassa E, Green PJ, Cerutti H (2010). Uridylation of mature miRNAs and siRNAs by the MUT68 nucleotidyltransferase promotes their degradation in Chlamydomonas. Proc Natl Acad Sci U S A 107, 3906–3911.
Jones-Rhoades MW, Bartel DP, Bartel B (2006). MicroRNAs and Their Regulatory Roles in Plants. Annu. Rev. Plant Biol. 57, 19–53.
Jones MR, Quinton LJ, Blahna MT, Neilson JR, Fu S, Ivanov AR, Wolf DA, Mizgerd JP (2009). Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat Cell Biol 11, 1157–1163.
Kai ZS, Pasquinelli AE (2010). MicroRNA assassins: factors that regulate the disappearance of miRNAs. Nat Struct Mol Biol 17, 5–10.
Katoh T, Sakaguchi Y, Miyauchi K, Suzuki T, Kashiwabara S, Baba T (2009). Selective stabilization of mammalian microRNAs by 3' adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes Dev 23, 433–438.
Kim S, Lee UJ, Kim MN, Lee EJ, Kim JY, Lee MY, Choung S, Kim YJ, Choi YC (2008). MicroRNA miR-199a* regulates the MET proto-oncogene and the downstream extracellular signal-regulated kinase 2 (ERK2). Journal of Biological Chemistry 283, 18158–18166.
Kozomara A, Griffiths-Jones S (2011). miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39, 152–157.
Kurihara Y, Takashi Y, Watanabe Y (2006). The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12, 206–212.
Lee RC, Feinbaum RL, Ambros V (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854.
Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004). MicroRNA genes are transcribed by RNA polymerase II. Embo J 23, 4051– 4060.
Li J, Yang Z, Yu B, Liu J, Chen X (2005). Methylation protects miRNAs and siRNAs from a 3'-end uridylation activity in Arabidopsis. Curr Biol 15, 1501–1507.
Lobbes D, Rallapalli G, Schmidt DD, Martin C, Clarke J (2006). SERRATE: a new player on the plant microRNA scene. Embo Rep 7, 1052–1058.
Lu S, Sun YH, Chiang VL (2009). Adenylation of plant miRNAs. Nucleic Acids Res 37, 1878–1885.
Meng Y, Shao C, Wang H, Chen M (2011). The Regulatory Activities of Plant MicroRNAs: A More Dynamic Perspective. Plant Physiol 157, 1583–1595.
Okamura K, Phillips MD, Tyler DM, Duan H, Chou YT, Lai EC (2008). The regulatory activity of microRNA* species has substantial influence on microRNA and 3' UTR evolution. Nat Struct Mol Biol 15, 354–363.
Parizotto EA, Dunoyer P, Rahm N, Himber C, Voinnet O (2004). In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev 18, 2237–2242.
Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS (2005). Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci U S A 102, 3691–3696.
Ramachandran V, Chen X (2008). Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science 321, 1490–1492.
Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002). MicroRNAs in plants. Genes Dev 16, 1616–1626.
Vazquez F, Gasciolli V, Crete P, Vaucheret H (2004). The nuclear dsRNA binding protein HYL1 is required for MicroRNA accumulation and plant development, but not posttranscriptional transgene silencing. Current Biology 14, 346–351.
Wyman SK, Knouf EC, Parkin RK, Fritz BR, Lin DW, Dennis LM, Krouse MA, Webster PJ, Tewari M (2011). Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity. Genome Res 21, 1450–1461.
Yakovlev IA, Fossdal CG, Johnsen O (2010). MicroRNAs, the epigenetic memory and climatic adaptation in Norway spruce. New Phytol 187, 1154–1169.
Yang L, Liu ZQ, Lu F, Dong AW, Huang H (2006). SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J 47, 841–850.
Zhang JH, Zhang SG, Han SY, Wu T, Li XM, Li WF, Qi LW (2012). Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis. Planta 236, 647–657.
Zhang JH, Zhang SG, Li SG, Han SY, Wu T, Li XM, Qi LW (2013). A genome-wide survey of microRNA truncation and 3' nucleotide addition events in larch (Larix leptolepis). Planta 237, 1047–1056.
文章导航

/

674-3466/bottom_cn.htm"-->