以受体杨树107和转基因杨树18-1的一年生枝条为材料, 采用Hoagland营养液水培方法, 添加不同浓度的NaCl, 检测二者植株生长以及叶中Na+和K+含量的变化。结果表明, 在0.6%NaCl处理下18-1生根率明显高于107, 生物量较大, 叶片中Na+积累量是107的1.45倍左右。以107和18-1离体叶片为材料, NaCl处理下测定其生理活性指标, 发现18-1叶盘的失绿速度和相对电导率都显著低于107叶盘。把离体叶片接种在改良MS培养基上, 1.2%NaCl处理可使107叶盘几乎停止伸长, 细胞大小不再增加; 而18-1叶盘培养7天后伸长了近50%。以上结果表明利用离体叶片可以鉴定出不同基因型杨树的耐盐潜力。
张颖, 杨迎霞, 郏艳红, 周祥明, 聂莉莉, 张越, 陈受宜, 王景安, 刘仲齐
. 利用离体叶片鉴定杨树耐盐潜力[J]. 植物学报, 2011
, 46(3)
: 302
-310
.
DOI: 10.3724/SP.J.1259.2011.00302
Plant dry weight and changes in Na+ and K+ contents in leaves were investigated in 1-year-old cuttings from the receptor poplar 107 (Populus × euramericana ‘Neva’) and transgenic poplar 18-1 after cuttings were cultured in Hoagland solution with different NaCl concentrations. The growth and rooted percentage of 18-1 was higher than that of 107 with 0.6%NaCl, and the accumulation of Na+ in 18-1 leaves was about 1.45 times higher than that in 107. Physiological characteristics in leaf sections from 107 and 18-1 under NaCl stress were determined. Leaf sections from 18-1 displayed lower chlorophyll decreasing speed and relative electrical conductivity than that from 107. When sections of young poplar leaves were plated on MS medium with 1.2%NaCl, leaf sections from 107 stopped growing, but those from 18-1 grew continuously and their length increased nearly 50% after 7 days. Thus, salt tolerance between different genotypes can be identified in leaf sections.
丁丽娜,金华,殷鸣放,朱学静,赵允鹏,姜国斌(2006).盐胁迫对杨树幼苗叶片光合色素及气体交换特征的影响.西北植物学报,26(12):2523-2527
贾文庆,刘会超(2009).NaCl胁迫对白三叶一些生理特性的影响.草业科学,26(8):187-189
何毅敏,年洪娟,陈丽梅(2009).植物耐盐基因工程研究进展.中国生物工程杂志,29(3):100-
104
姜超强,郑青松,刘兆普,徐文君,李洪燕,李 青(2010).转AtNHX1基因杨树Tr品系的耐盐性研究.植物生态学报,34(5):563-570。
教忠意,王保松,施士争,韩杰峰,汪有良,张珏,隋德宗(2008).林木抗盐性研究进展.西北林学院学报,23(5): 60-64
李合生(2000). 植物生理生化实验原理和技术.北京:高等教育出版社.
李金花,苏晓华,张绮文(1997).林木耐盐体细胞突变育种研究进展.世界林业研究, 6: 15-21
吕素莲(2007).转betA和TsVP基因提高棉花耐盐、抗旱性的研究.博士学位论文.济南:山东大学.pp.76-77.
买买提﹒阿扎提, 艾力克木卡德尔, 吐尔逊?哈斯木(2008).土壤盐渍化及其治理措施研究综述.环境科学与管理, 33(5):29-33
宋杰,范海,赵可夫,(2000).试论可持续的盐地农业.山东师大学报(自然科学版),15(4):450-453
陶晶,秦彩云,姚露贤(2000).杨树耐盐突变体育种研究进展.吉林林业科技, 29(2):5-8, 50
杨迎霞,郏艳红,聂莉莉,张越,陈受宜,王景安,刘仲齐(2009).杨树叶片中Na+的积累与其耐盐能力的关系.植物生理学通讯,45(11):1070-1074
Cuin T A, Betts S A, Chalmandrier R and Shabala S(2008). A root`s ability to retain K+ correlates with salt tolerance in wheat.J Exp. Bot,59:2697-2706
Darren C P,Inge S M(2010).Na+ transport in glycophytic plants: what we know and would like to know. Plant, Cell and Environment ,33:612–626
Garg A K, Kim J K, Owens T G,Ranwala A.P,Choi Y.D,Kochlan L.V,Wu R.J(2002). Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc. Natl.Acad. Sci. USA,99:15898-15903.
Garthweite A J,Bothmer R and Colmer T D(2005). Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl- into the shoots.J. Exp. Bot, 56:2365-2378
James A.Allen,Jim L.Chambers,Michael Stine(1994).Prospects for increasing the tolerance of forest trees:a review.Tree Physiology,14:843-853
Li Y, Su X, Zhang B, Huang Q, Zhang X and Huang R (2008).Expression of jasmonic ethylene responsive factor gene in transgenic poplar tree leads to increased salt tolerance.Tree Physiology ,29:273-279
Lv S L, Zhang K W, GAO Q, Lian L J, Song Y J, Zhang J R (2008). Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance.Plant Cell Physiol, 49: 1150-1164
Munns R,James R A and Lauchli A (2006).Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot,57(5):1025-1043
Munns R,Tester M(2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59,651-681
Parida A K and Das A B(2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60:324-349.
SmethurstC F, Gill W M and Shabala S,(2009). Using excised leaves to screen lucerne for salt tolerance. Plant Signaling & Behavior,4:39-41
Vera-Estrella R,Barkla B J, Garcia-Ramirez L and Pantoja O(2005).Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance.Plant Physiol,139:150
7-1517
Widodo, Patterson J H, Newbigin E,Tester M,Bacic A and Roessner U(2009).Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J. Exp. Bot,60(40):4089-4103
Zhang H X and Blumwald E(2001). Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnol,19:765-768
ZHU J K. Regulation of ion homeostasis under salt stress. Current Opinion of Plant Biology, 2003, 6: 441-445