研究论文

SLC/AGO1基因控制拟南芥细胞分裂与定向伸长

展开
  • 1中国科学院植物研究所信号转导与代谢组学研究中心, 北京 100093;
    2鲁东大学生命科学学院, 烟台 264025

收稿日期: 2010-11-15

  修回日期: 2011-01-26

  网络出版日期: 2011-07-01

基金资助

国家科技部项目

SLC/AGO1 Coordinates Cell Division and Expansion in Arabidopsis

Expand
  • 1Center for Signal Transduction & Metabolomics, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China

    2School of Life Sciences, Ludong University, Yantai 264025, China

Received date: 2010-11-15

  Revised date: 2011-01-26

  Online published: 2011-07-01

摘要

植物通过控制细胞分裂和伸长决定器官的形状。为了研究器官形状决定的分子机理, 通过EMS诱变分离得到一个叶形细长的拟南芥突变体。细胞生物学观察发现, 该基因突变不仅影响了生长点中的细胞分裂, 也影响了叶片细胞的形状和数目, 其表皮细胞凸起数明显减少, 呈单轴向伸长, 因此将该突变体定名为slender leaves and cells (slc)。有趣的是, 不同组织内细胞分裂和伸长受到不同程度的影响, 说明SLC基因在协调细胞分裂和伸长过程中起关键作用。图位克隆结果表明, SLC与小RNA介导的基因沉默相关基因AGO1等位, 其第574位组氨酸突变为酪氨酸。slcago1杂交F1代植物呈现突变体表型, 证明AGO1SLC确实为同一基因。以上结果表明, SLC/AGO1所介导的转录后基因沉默对控制植物器官和细胞形状决定均起重要作用。

本文引用格式

王文婧, 刘婷, 郭磊, 刘春明 . SLC/AGO1基因控制拟南芥细胞分裂与定向伸长[J]. 植物学报, 2011 , 46(4) : 370 -378 . DOI: 10.3724/SP.J.1259.2011.00370

Abstract

The shapes of organs in plants are determined by defined cell divisions and cell elongations. To understand how organ shape is genetically controlled, we used ethyl methanesulfonate (EMS) mutagenesis to identify a mutant with slender leaves, slender leaves and cells (slc). Cytological studies showed that the mutation affected cell division, as well as cell shape and number. The interdigitation in pavement cells in slc was greatly reduced, in parallel with the formation of gigantic cells with 1-D cell elongation. Of note, the mean cell size in slc was no larger than that in the wild type, which suggests that expansion is at the cost of reduced cell size in other cells. The function of SLC may be to coordinate cell division and expansion to allow proper interdigitation among cells. Map-based cloning revealed that SLC is allelic to AGO1, a key component in post-transcriptional gene silencing. The mutation led to a change from a highly conserved histidine to tyrosine. Our results suggest that AGO1-mediated gene silencing is critical for determining the shapes of cells and subsequent organs.

参考文献

Arkebuer TJ, Norman JM (1995). From cell growth to leaf growth: I. Coupling cell division and cell expansion. Agron J 87, 99–105
Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, Martienssen RA (2000). Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408, 967–971
Bowman JL, Eshed Y, Baum SF (2002). Establishment of polarity in angiosperm lateral organs. Trends Genet 18, 134–141
Braybrook SA and Kuhlemeier C (2010). How a plant builds leaves. Plant Cell 22, 1006-1018
Bohmert K, Camus I, Bellini C, Bouchez D, Caboche M and Benning C (1998). AGO1 defines a novel locus of Arabidopsis controlling leaf development. The EMBO Journal 17, 170–180
Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003). Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13, 1768–1774
Eshed Y, Baum SF, Perea JV, and Bowman JL (2001). Establishment of polarity in lateral organs of Arabidopsis. Current Biol 11, 1251-1260
Fiers M, Ku KL and Liu CM (2007). CLE peptide ligands and their roles in establishing meristems. Curr Opin Plant Biol 10, 39-43
Hu Y, Xie Q and Chua NH (2003). The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. Plant Cell 15, 1951-1961
Hu Z, Qin Z, Wang M, Xu C, Feng G, Liu J, Meng Z and Hu Y (2010). The Arabidopsis SMO2, a homologue of yeast TRM112, modulates progression of cell division during organ growth. Plant J 61, 600-610
Liu CM and Hu Y (2010). Plant stem cells amd their regulations in shoot apical meristems. Front in Biol. in press
Matsuzaki Y, Ogawa-Ohnishi M, Mori A, Matsubayashi Y (2010). Secreted peptide signals required for maintenance of root stem cell niche in Arabidopsis. Science. 329, 1065-1067
Iwakawa H, Ueno Y, Semiarti E, Onouchi H, Kojima S, Tsukaya H, Hasebe M, Soma T, Ikezaki M, Machida C, Machida Y (2002). The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper. Plant Cell Physiol 43, 467–478
Jing Y, Cui D, Bao F, Hu Z, Qin Z, Hu Y (2009). Tryptophan deficiency affects organ growth by retarding cell expansion in Arabidopsis. Plant J 57,511-521
Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MC (2004). microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428, 84–88
Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Poethig RS (2001). KANADI regulates organ polarity in Arabidopsis. Nature 411, 706–709
Kidner CA, Martienssen RA (2004). Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature 428, 81–84
McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK (2001). Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411, 709–713
Mallory AC, Elmayan T, Vaucheret H (2008). MicroRNA maturation and action - the expanding roles of ARGONAUTEs. Curr Opin Plant Biol 11, 560-566
Ori N, Eshed Y, Chuck G, Bowman JL, Hake S (2000). Mechanisms that control knox gene expression in the Arabidopsis shoot. Development 127, 5523–5532
Otsuga D, DeGuzman B, Prigge MJ, Drews GN, Clark SE (2001). REVOLUTA regulates meristem initiation at lateral positions. Plant J 25, 223–236
Qian G, Hu S, Guo G (2009). Molecular mechanisms controlling pavement cell shape in Arabidopsis leaves. Plant Cell Report 28, 1147-1157
Sawa S, Watanabe K, Goto K, Liu YG, Shibata D, Kanaya E, Morita EH, Okada K (1999). FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes Dev 13, 1079–1088
Semiarti E, Ueno Y, Tsukaya H, Iwakawa H, Machida C, Machida Y (2001). The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development 128, 1771–1783
Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman JL (1999). Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126, 4117–4128
Tsukaya H (2002). Leaf development. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis Book. American Society of Plant Biologists, Rockville.
Tsukaya H (2003). Organ shape and size: a lesson from studies of leaf morphogenesis. Curr Opin Plant Biol 6, 57–62
Waites R, Selvadurai HR, Oliver IR, Hudson A (1998). The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell 93, 779–789
Xu T, Wen M, Nagawa S, Fu Y, Chen JG, Wu MJ, Perrot-Rechenmann C, Friml J, Jones AM, Yang Z (2010). Cell surface- and Rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143, 99 - 110
Yang L, Huang W, Wang H, Cai H, Xu Y, Huang H (2006). Characterizations of a hypomorphic argonaute1 mutant reveal novel AGO1 functions in Arabidopsis lateral organ development. Plant Molecular Biology 61, 63–78
文章导航

/

674-3466/bottom_cn.htm"-->