以H2O2为中心的活性氧(reactive oxygen species, ROS)的产生是动植物发育与响应外界生物与非生物胁迫的普遍
特征, 其在生理和分子2个水平上调控植物的发育和对外界胁迫的响应, 并与一系列信号转导过程相关联。作为关键的ROS产生酶, 质膜NADPH氧化酶(plasma membrane NADPH oxidase, PM-NOX)在植物应对各种生物和非生物胁迫中具有重要作用, 被广泛认为是胁迫条件下植物细胞ROS产生并积累的主要来源。该文简要综述了近年来人们在植物细胞ROS产生、清除、生理功能以及PM-NOX酶的结构特征与功能等方面的研究进展, 并认为H2O2-NOX系统是一种植物体内普遍存在的重要发育调控与胁迫响应机制。
An oxidative burst of reactive oxygen species (ROS) expression is a common response of plants to developmental events and to a number of biotic and abiotic stresses. ROS production physiologically and molecularly regulates development and the stress response and has been proposed as an intracellular second messenger mediating the induction of systematic acquired resistance and the control and regulation of a series of biological processes such as growth, cell cycle, programmed cell death and hormone signaling. The molecular and physiological data indicate functional and mechanistic similarities between the animal and plant NADPH oxidase (NOX), and this enzyme has been considered a major source of ROS production in all life kingdoms. The functions of plasma membrane NOX (PM-NOX) are tightly associated with the production and accumulation of ROS in plants. Here, we report on recent findings in the production and scavaging roles of ROS and the structural features and functions of PM-NOX in plants. The H2O2-NOX system may be an important mechanism for developmental regulation and stress response in plants.