[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究论文

牡丹TCP基因家族鉴定及TCP15a功能分析

  • 韩新蕊 ,
  • 袁欣 ,
  • 高杰 ,
  • 王亮生 ,
  • 王晓晖 ,
  • 贾文庆 ,
  • 符真珠 ,
  • 张和臣
展开
  • 1河南科技学院, 新乡 453003; 2河南省农业科学院园艺研究所, 郑州 450002; 3中国科学院植物研究所, 北京 100093; 4洛阳市农林科学院, 洛阳 471026



收稿日期: 2025-01-15

  修回日期: 2025-03-13

  网络出版日期: 2025-03-18

基金资助

国家自然科学基金(No.32030095)、河南省联合基金(No.242301420128)、河南省农业科学院创新团队项目(No.2024TD36)、河南省科技攻关项目“切花牡丹核心种质资源构建及应用”(No.242102110269)和中央引导计划项目(No.Z20241471128)

Identification of TCP Gene Family and Functional Analysis of TCP15a of Tree Peony

  • HAN Xin-Juan ,
  • YUAN Xin ,
  • GAO Jie ,
  • YU Liang-Sheng ,
  • YU Xiao-Hui ,
  • GU Wen-Qiang ,
  • FU Zhen-Zhu ,
  • ZHANG He-Chen
Expand
  • 1Henan Institute of Science and Technology, Xinxiang 453003, China; 2Horticultural Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; 3Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; 4Luoyang Academy of Agricultural and Forestry Sciences, Luoyang 471026, China

Received date: 2025-01-15

  Revised date: 2025-03-13

  Online published: 2025-03-18

摘要

为了研究TCP转录因子家族在牡丹(Paeonia sect. Moutan)花瓣呈色过程中的作用, 为牡丹花色改良和分子育种提供候选基因。本研究对牡丹TCP家族进行鉴定、生物信息学分析, 并对可能参与花色调控的基因TCP13、TCP15a进行功能分析。研究结果表明: 在3个牡丹基因组中共鉴定出26个TCP家族成员, 分为2个亚族3个亚类, 不规则的分布在5条染色体上; 不同成员的理化性质、基因结构存在差异, 但均含有TCP保守结构域。矮牵牛(Petunia hybrida)花瓣瞬时表达TCP13TCP15a, 发现TCP13MYB57诱导的紫色表型无明显作用, 而TCP15a可显著抑制; 荧光定量PCR分析表明, TCP15a可以显著抑制MYB57诱导浸染的花瓣组织内花青苷合成酶基因CHSa、DFR、ANS的表达。进一步通过蛋白互作鉴定发现, TCP15a与MBW蛋白复合体成员WD40-1、WD40-2互作。TCP15a通过与MYB57竞争与WD40的相互作用, 影响了MBW复合体的形成, 进而抑制了MYB57对花青苷合成酶基因的调控作用。本研究为深入研究牡丹TCP家族基因功能奠定理论基础, 为牡丹花色定向育种提供了有价值的线索。

本文引用格式

韩新蕊 , 袁欣 , 高杰 , 王亮生 , 王晓晖 , 贾文庆 , 符真珠 , 张和臣 . 牡丹TCP基因家族鉴定及TCP15a功能分析[J]. 植物学报, 0 : 1 -0 . DOI: 10.11983/CBB25005

Abstract

INTRODUCTION: Flower color is one of the important traits to evaluate the ornamental value of tree peony (Paeonia suffruticosa). Anthocyanin plays a major role in the color of tree peony petals. The biosynthesis of anthocyanin is mainly controlled by two types of genes which are directly involved in pigment metabolism and transcription factors which play a regulatory role. TCP transcription factors are involved in the regulation of secondary metabolism, flavonoid and chlorophyll synthesis in plants. Therefore, it is of great value for further analysis of anthocyanin biosynthesis and regulation mechanism to explore the gene function of TCP family in tree peony and clarify the regulation mechanism of TCP in tree peony petal coloration.



RATIONALE: In order to study the role of TCP transcription factor family in the process of tree peony petal coloration and provide candidate genes for tree peony flower color improvement and molecular breeding, the TCP family of tree peony was identified and analyzed by bioinformatics, and the function of genes TCP13 and TCP15a that may be involved in flower color regulation was analyzed.



RESULTS: Twenty-six TCP gene family members were identified from three tree peony genomes and divided into two subtribes and three subclasses, which were irregularly distributed on 5 chromosomes. The physicochemical properties and gene structure of different members were different, but all members contained TCP conserved domains. The transient expression of TCP13 and TCP15a, which may be involved in petal coloration, showed that TCP13 had no obvious effect on the purple phenotype induced by MYB57, while TCP15a could significantly inhibit it.Fluorescence quantitative PCR analysis showed that TCP15a could significantly inhibit the expression of anthocyanin synthase genes CHSa, DFR and ANS in the tissue of disseminated petals. The interaction between TCP15a and MBW protein complex members WD40-1 and WD40-2 was identified by protein interaction identification.



CONCLUSION: In this study, twenty-six TCP gene family members were screened and identified by mining the tree peony genome database, and the characteristics of TCP encoded amino acids, evolutionary relationship and gene structure were analyzed by bioinformatics.It was found that TCP15a may inhibit the biosynthesis of anthocyanins by competing with MYB57 and interacting with WD40, regulating the expression of enzyme genes CHSa, DFR and ANS, etc. The results provided a theoretical basis for exploring the molecular mechanism of tree peony petal coloration.





Identification of TCP gene family and functional analysis of TCP13 and TCP15a of tree peony. In this study, twenty-six TCP gene family members were screened and identified, and the characteristics of TCP encoded amino acids, evolutionary relationship and gene structure were analyzed by bioinformatics. And.TCP15a was found to inhibit anthocyanin biosynthesis by competing with MYB57 and interacting with WD40.




[an error occurred while processing this directive]

参考文献

参考文献
Suo ZL, Zhao XQ, Zhao JP, Zhao XC, Chen FF(2008). 'Sisters on spring outing' (Paeonia suffruticosa 'Zi Mei You Chun') (Paeoniaceae): a unique chinese tree peony cultivar possessing si-de flowers and bicolored floral discs. Hortscience 43(2), 532-534. (in Chinese)
Zhang jj, Wang LS, Liu ZA(2006). Recent Advances in Flower Color Research of Tree Peony. Acta Horticulturae Sinica 06, 1383-1388. (in Chinese)
张晶晶,王亮生,刘政安(2006). 牡丹花色研究进展. 园艺学报06, 1383-1388.
Yang XH, Wang JR, Xia XZ,Zhang ZQ, He J, Nong BX, Luo TP, Feng R, Wu YY, Pan YH, Xiong FQ, Zeng Y, Chen C, Xu ZJ, Li DT Deng GF(2021). OsTTG1, a WD40 repeat gene, regulates anthocyanin biosynthesis in rice. The Plant Journal 107(1), 198-214. (in Chinese)
Xu WJ, Dubos C, Lepiniec L(2015). Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci 20(3), 176-85.
Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C(2003). The OsTB1 gene negatively regulates lateral branching in rice. Plant J 33(3), 513-20.
Yang X, Wang Y, Liu TX, Liu Q, Liu J, Lü TF, Yang RX, Guo FX, Wang YZ(2023). CYCLOIDEA-like genes control floral symmetry, floral orientation, and nectar guide patterning. Plant Cell 35(8), 2799-2820. (in Chinese)
Li X, Zhang G, Liang Y, Hu L, Zhu B, Qi D, Cui S, Zhao H(2021). TCP7 interacts with Nuclear Factor-Ys to promote flowering by directly regulating SOC1 in Arabidopsis. Plant J 108(5), 1493-1506. (in Chinese)
Zhang Y, Zhao M, Zhu W, Shi C, Bao M, Zhang W(2021). Nonglandular prickle formation is associated with development and secondary metabolism-related genes in Rosa multiflora. Physiol Plant 173(3), 1147-1162. (in Chinese)
Viola IL, Gonzalez DH(2023). TCP Transcription Factors in Plant Reproductive Development: Juggling Multiple Roles. Biomolecules 13(5), 750.
Martín-Trillo M, Cubas P(2010). TCP genes, A family snapshot ten years later. Trends Plant Sci 15(1), 31-39.
Kosugi S, Ohashi Y(1997). PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. Plant Cell 9(9), 1607-1619.
Cubas P, Lauter N, Doebley J, Coen E(1999). The TCP domain: a motif found in proteins regulating plant growth and development. Plant J 18(2), 215-22.
Zhang YJ,Pan YC,Wang RX,?Li LJ, Zhang J (2014). Research Progress of Genes which Relate to the Biosynthetic Pathway of Anthocyanins. Journal of Anhui Agricultural Sciences 42(34), 12014-12016. (in Chinese)
张云洁,潘怡辰,王汝茜,李集临,张杰(2014). 植物花青苷生物合成途径相关基因的研究进展. 安徽农业科学 42(34), 12014-12016.
Ivana LV?,?Alejandra C,?Daniel HG?(2016). Redox-Dependent Modulation of Anthocyanin Biosynthesis by the TCP Transcription Factor TCP15 during Exposure to High Light Intensity Conditions in Arabidopsis. Plant physiology 170(1), 74-85.
Hur YS, Oh J, Kim N, Kim S, Son O, Kim J, Um JH, Ji Z, Kim MH, Ko JH(2024), Ohme-Takagi M, Choi G, Cheon CI. Arabidopsis transcription factor TCP13 promotes shade avoidance syndrome-like responses by directly targeting a subset of shade-responsive gene promoters. J Exp Bot 75(1), 241-257. (in Chinese)
Xie YG (2019). Functional Analysis of Strawberry(Fragaria vesca) Transcription FactorFvTCP9 in Fruit Ripening. Master’s thesis. Shan-Xi: Northwest A and F University. pp. 1–58. (in Chinese)
谢尹歌(2019). 草莓转录因子FvTCP9在果实成熟中的功能研究. 硕士论文. 陕西: 西北农林科技大学. PP. 1–58.
Tatematsu K, Nakabayashi K, Kamiya Y, Nambara E (2008). Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana. Plant J 53(1), 42-52.
Guan ZW, Cao XY, Zhang XW, Zhou XY(2022). Genome-wide Identification and Expression Analysis of TCP Family in Rice(Oryza sativa L.). Molecular Plant Breeding 20(10), 3145-3156. (in Chinese)
关紫微, 曹希雅, 张先文, 周小云(2022). 水稻TCP家族的全基因组鉴定及表达分析. 分子植物育种 20(10), 3145-3156.
Sun HD, Xue JZ, Liu YJ, Liu C, Nian XC, Bian Z, Li Q, Li LY, Liu YW, Gong XD(2021). Genome Identification and Expression Pattern Analysis of TCP Transcription Factor Family in Maize. Molecular Plant Breeding 19(08), 2460-2471. (in Chinese)
孙菡笛, 薛江芝, 刘亚洁, 刘畅, 年旭昌, 卞哲, 李晴, 李路阳, 刘玉卫, 巩校东(2021). 玉米TCP转录因子家族的全基因组鉴定及表达模式分析. 分子植物育种 19(08), 2460-2471.
Tan ZW, Guo SZ, Su XY, Sun Y, Yu YL, Li L, Zhang LC, Xu LJ, Lu DD, An SF, Li CM, Liang HZ, Wang ZJ(2024). Genome-wide analysis of TCP gene family and their expression pattern analysis in Lonicera japonica. Chinese Traditional and Herbal Drugs 55(05), 1665-1676. (in Chinese)
谭政委,郭水柱,苏小雨,孙瑶,余永亮,李磊,张利超,许兰杰,鲁丹丹,安素妨,李春明,梁慧珍,王子君(2021). 全基因组水平金银花TCP基因家族的鉴定及表达模式分析. 中草药 55(05),1665-1676.
Zhou WY, Wu FY, Zhao MY, Huang L, Chen XJ, Zhou Y, Liu KD(2024). Identification of TCP transcription factors in Carica papaya and their expression during fruit ripening. Journal of Zhejiang Agricultural Sciences, 65(11), 2693-2702.(in Chinese)
周汪洋,吴飞燕,赵苗羽,黄蕾,陈雄进,周艳,刘锴栋(2024). 番木瓜TCP转录因子鉴定及在果实成熟中的表达.浙江农业科学 65(11), 2693-2702.
Chen ZH, Qiao ZS, Li JQ, Zhang XL, Ma SJ, He CZ, Zong D(2024). Genome-wide Identification and Characterization of the TCP GeneFamily in Populus yunnanensis. Biotechnology Bulletin 40(11), 214-226. (in Chinese)
陈智华,乔振升,李嘉其,张晓琳,马少杰,何承忠,纵丹(2024). 滇杨TCP基因家族的全基因组鉴定与分析.生物技术通报 40(11), 214-226.
Sun QX, Chen ZT, Chen RR, Zhang B(2024). Genome-wide identification and analysis of TCP transcription factors in bermudagrass. Pratacultural Science 41(10), 2330-2344. (in Chinese)
孙启雪, 陈焯婷, 陈荣荣, 张兵(2024). 狗牙根TCP转录因子基因家族鉴定与分析.草业科学 41(10), 2330-2344.
Fu ZZ, Yuan X, Wang EQ, Wang XH, Gao J, Wang HJ, Li YM, Han XR, Shi M, Wang LS, Zhang HC(2024). Transcriptional and metabolic analysis of the mechanism underlying colored blotches of tree peony ‘High Noon’ petals. Plant Physiology Journal 60(10), 1524-1536. (in Chinese)
符真珠,袁欣,王二强,王晓晖,高杰,王慧娟,李艳敏,韩新蕊,师曼,王亮生,张和臣(2024). 牡丹‘海黄’花瓣se斑呈色的转录及代谢机制解析. 植物生理学报 60(10), 1524-1536.
Sreedasyam A, Lovell JT, Mamidi S, Khanal S, Jenkins JW, Plott C, Bryan KB, Li Z, Shu S, Carlson J, Goodstein D, De Santiago L, Kirkbride RC, Calleja S, Campbell T, Koebernick JC, Dever JK, Scheffler JA, Pauli D, Jenkins JN, McCarty JC, Williams M, Boston L, Webber J, Udall JA, Chen ZJ, Bourland F, Stiller WN, Saski CA, Grimwood J, Chee PW, Jones DC, Schmutz J(2024). Genome resources for three modern cotton lines guide future breeding efforts. Nat Plants 10(6), 1039-1051.
Zhang Y, Yang Z, He Y, Liu D, Liu Y, Liang C, Xie M, Jia Y, Ke Q, Zhou Y, Cheng X, Huang J, Liu L, Xiang Y, Raman H, Kliebenstein DJ, Liu S, Yang QY(2024). Structural variation reshapes population gene expression and trait variation in 2,105 Brassica napus accessions. Nat Genet 56(11), 2538-2550. (in Chinese)
Zhang YZ, Xu SZ, Cheng YW, Wang J, Wang XX, Liu RX, Han JM(2020). Functional identification of PsMYB57 involved in anthocyanin regulation of tree peony. BMC Genet 21(1), 124. (in Chinese)
Zhang YZ, Xu SZ, Ma HP, Duan XJ, Gao SX, Zhou XJ, Cheng YW. The R2R3-MYB gene PsMYB58 positively regulates anthocyanin biosynthesis in tree peony flowers. Plant Physiol Biochem 164, 279-288. (in Chinese)
Wang F, Wang XJ, Zhao SN, Yan JR, Bu X, Zhang Y, Liu YF, Xu T, Qi MF, Qi HY, Li TL(2020). Light Regulation of Anthocyanin Biosynthesis in Horticultural Crops. Scientia Agricultura Sinica 53(23),4904-4917. (in Chinese)
王峰,王秀杰,赵胜男,闫家榕,卜鑫,张颖,刘玉凤,许涛,齐明芳,齐红岩,李天来(2020). 光对园艺植物花青素生物合成的调控作用.中国农业科学 53(23), 4904-4917.
Grotewold E (2006). The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57(1), 761-780.
Zimmermann IM, Heim MA, Weisshaar B, Uhrig JF(2004). Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J 40(1), 22-34.
文章导航

/

[an error occurred while processing this directive]