[1] |
陈威, 杨颖增, 陈锋, 周文冠, 舒凯 (2019). 表观遗传修饰介导的植物胁迫记忆. 植物学报 54, 779-785.
DOI
|
[2] |
杜康兮, 沈文辉, 董爱武 (2018). 表观遗传调控植物响应非生物胁迫的研究进展. 植物学报 53, 581-593.
DOI
|
[3] |
王泓力, 焦雨铃 (2020). 染色质免疫共沉淀实验方法. 植物学报 55, 475-480.
DOI
|
[4] |
杨同文, 李成伟 (2014). 植物叶片衰老的表观遗传调控. 植物学报 49, 729-737.
DOI
|
[5] |
Brahma S, Henikoff S (2019). RSC-associated subnucleosomes define MNase-sensitive promoters in yeast. Mol Cell 73, 238-249.
DOI
PMID
|
[6] |
Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013). Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10, 1213-1218.
DOI
PMID
|
[7] |
Dancette OP, Taboureau JL, Tournier E, Charcosset C, Blond P (1999). Purification of immunoglobulins G by protein A/G affinity membrane chromatography. J Chromatogr B: Biomed Sci Appl 723, 61-68.
DOI
URL
|
[8] |
Di L, Fu Y, Sun YS, Li J, Liu L, Yao JC, Wang GB, Wu YL, Lao KQ, Lee RW, Zheng GH, Xu J, Oh J, Wang D, Xie XS, Huang YY, Wang JB (2020). RNA sequencing by direct tagmentation of RNA/DNA hybrids. Proc Natl Acad Sci USA 117, 2886-2893.
|
[9] |
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21.
DOI
PMID
|
[10] |
Kaya-Okur HS, Wu SJ, Codomo CA, Pledger ES, Bryson TD, Henikoff JG, Ahmad K, Henikoff S (2019). CUT& Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun 10, 1930.
DOI
PMID
|
[11] |
Kharchenko PV, Tolstorukov MY, Park PJ (2008). Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat Biotechnol 26, 1351-1359.
DOI
PMID
|
[12] |
Lindmark R, Thorén-Tolling K, Sjöquist J (1983). Binding of immunoglobulins to protein A and immunoglobulin levels in mammalian sera. J Immunol Methods 62, 1-13.
PMID
|
[13] |
Lovell S, Goryshin IY, Reznikoff WR, Rayment I (2002). Two-metal active site binding of a Tn5 transposase synaptic complex. Nat Struct Biol 9, 278-281.
PMID
|
[14] |
Martin M (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal 17, 10-12.
|
[15] |
Meers MP, Bryson TD, Henikoff JG, Henikoff S (2019). Improved CUT&RUN chromatin profiling tools. eLife 8, e46314.
|
[16] |
Ouyang WZ, Zhang XW, Peng Y, Zhang Q, Cao ZL, Li GL, Li XW (2021). Rapid and low-input profiling of histone marks in plants using nucleus CUT&Tag. Front Plant Sci 12, 734679.
|
[17] |
Picelli S, Björklund ÅK, Reinius B, Sagasser S, Winberg G, Sandberg R (2014). Tn5 transposase and tagmentation procedures for massively scaled sequencing projects. Genome Res 24, 2033-2040.
DOI
PMID
|
[18] |
Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dündar F, Manke T (2016). DeepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 44, W160-W165.
|
[19] |
Schmidt D, Wilson MD, Spyrou C, Brown GD, Hadfield J, Odom DT (2009). ChIP-seq: using high-throughput sequencing to discover protein-DNA interactions. Methods 48, 240-248.
DOI
PMID
|
[20] |
Skene PJ, Henikoff S (2017). An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 6, e21856.
|
[21] |
Tao XY, Feng SL, Zhao T, Guan XY (2020). Efficient chromatin profiling of H3K4me3 modification in cotton using CUT&Tag. Plant Methods 16, 120.
DOI
|
[22] |
Thakur J, Henikoff S (2018). Unexpected conformational variations of the human centromeric chromatin complex. Genes Dev 32, 20-25.
DOI
URL
|
[23] |
Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013). Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14, 178-192.
DOI
PMID
|
[24] |
Wang LG, Wang SQ, Li W (2012). RSeQC: quality control of RNA-seq experiments. Bioinformatics 28, 2184-2185.
DOI
PMID
|
[25] |
Zheng XY, Gehring M (2019). Low-input chromatin profiling in Arabidopsis endosperm using CUT&RUN. Plant Reprod 32, 63-75.
DOI
|