植物学报 ›› 2022, Vol. 57 ›› Issue (5): 697-712.DOI: 10.11983/CBB22038
• 专题论坛 • 上一篇
收稿日期:
2022-03-04
接受日期:
2022-05-12
出版日期:
2022-09-01
发布日期:
2022-07-14
通讯作者:
胡帅
作者简介:
*E-mail: hushuai@zafu.edu.cn基金资助:
Wu Fan, Shen Jinbo, Hu Shuai*()
Received:
2022-03-04
Accepted:
2022-05-12
Online:
2022-09-01
Published:
2022-07-14
Contact:
Hu Shuai
About author:
*E-mail: hushuai@zafu.edu.cn摘要: 真核细胞中, 功能高度保守的内体蛋白分选转运装置ESCRT在胞吞途径和蛋白分泌途径中均扮演重要角色。植物细胞中, 该装置包含ESCRT-I、ESCRT-II、ESCRT-III和VPS4/SKD1复合体4个亚基, 但缺乏ESCRT-0亚基。ESCRT的每个亚基均由多个蛋白构成。目前, 针对ESCRT的研究已经证实, 其在泛素化的膜蛋白进入多囊泡体/液泡前体(MVB/PVC)内腔过程中发挥重要调控作用; 同时在自噬途径以及应对环境胁迫等方面也具有重要的调节功能。该文首先介绍了植物中ESCRT复合体的组成及生物学功能, 然后总结了植物中特有ESCRT复合体组分蛋白的最新研究进展, 最后探讨了有关ESCRT复合体研究中尚未解决的重要科学问题。
吴凡, 沈锦波, 胡帅. 植物ESCRT复合体的功能研究进展. 植物学报, 2022, 57(5): 697-712.
Wu Fan, Shen Jinbo, Hu Shuai. Research Advances of the Plant ESCRT Machinery. Chinese Bulletin of Botany, 2022, 57(5): 697-712.
复合体 | 基因 | 功能 | 参考文献 |
---|---|---|---|
ESCRT-0 | N.I. | ||
VPS23A (AT3G12400) | 膜蛋白内吞分选; 非生物逆境胁迫应答调控; 细胞分裂; 病毒复制 | 2020 | |
VPS23B (AT5G13860) | 病毒复制 | 2009 | |
ESCRT-I | VPS28A (AT4G21560) | 胚胎发育; 生长素响应; 膜蛋白内吞分选; 液泡发育 | 2020 |
VPS28B (AT4G05000) | 胚胎发育; 生长素响应; 膜蛋白内吞分选; 液泡发育; 植物免疫 | 2020 | |
VPS37-1 (AT3G53120) | 植物免疫 | 2013 | |
VPS37-2 (AT2G36680) | |||
VPS22 (AT4G27040) | 水稻主根生长; 胚乳灌浆 | 2013 | |
ESCRT-II | VPS25 (AT4G19003) | 生长素响应; 主根生长 | 2014 |
VPS36 (AT5G04920) | 胚胎发育; 主根生长; MVB/PVC发育; 液泡发育; 膜蛋白内吞分选 | 2017 | |
VPS2.1 (AT2G06530) | 胚胎发育; MVB/PVC发育; 膜蛋白内吞分选; 自噬途径 | 2020 | |
VPS2.2 (AT5G44560) | |||
VPS2.3 (AT1G03950) | |||
VPS20.1 (AT5G63880) | MVB/PVC发育; 膜蛋白内吞分选; 病毒复制 | 2014 | |
ESCRT-III | VPS20.2 (AT5G09260) | ||
SNF7A (AT2G19830) | MVB/PVC发育; 膜蛋白内吞分选; 病毒复制 | 2014 | |
SNF7B (AT4G29160) | MVB/PVC发育; 植物发育; 病毒复制 | 2021 | |
VPS24-1 (AT5G22950) | MVB/PVC发育; 膜蛋白内吞分选; 病毒复制 | 2019 | |
VPS24-2 (AT3G45000) | |||
CHMP1A (AT1G73030) | 胚胎发育; MVB/PVC发育; 膜蛋白内吞分选, 自噬途径 | 2015 | |
ESCRT-III辅助蛋白 | CHMP1B (AT1G17730) | 胚胎发育; MVB/PVC发育; 膜蛋白内吞分选; 自噬途径 | 2015 |
VPS60-1 (AT3G10640) | |||
VPS60-2 (AT5G04850) | |||
CHMP7 (AT3G62080) | 衰老; 非生物逆境胁迫应答调控 | 2016 | |
ISTL (AT1G34220) | MVB/PVC发育; 植物发育; 植物免疫 | 2016 | |
VPS4/SKD1复合体 | VPS4/SKD1 (AT2G27600) | MVB/PVC发育; 膜蛋白内吞分选; 病毒复制; 植物免疫 | 2016 |
LIP5 (AT4G26750) | MVB/PVC发育; 植物发育; 膜蛋白内吞分选; 植物免疫; 非生物逆境胁迫应答调控 | 2016 | |
FREE1 (AT1G20110) | MVB/PVC发育; 液泡发育; 膜蛋白内吞分选; 自噬途径; 非生物逆境胁迫应答调控 | 2020 | |
植物特有蛋白 | FYVE4 (AT1G61690) | MVB/PVC发育; 膜蛋白内吞分选 | 2021 |
PROS (AT4G24370) | VPS4/SKD1复合体活性调控; 细胞延伸 | 2014 | |
BRAF (AT5G14020) | MVB/PVC发育; 与FREE1竞争性结合VPS23A | 2018 | |
RST1 (AT3G27670) | 胚胎发育; 茎角质层蜡的分布; 植物免疫; MVB/ PVC发育 | 2019 |
表1 内体蛋白分选转运装置(ESCRT)组分蛋白及其功能
Table 1 Endosomal sorting complex required for transport (ESCRT) components and their functions in plants
复合体 | 基因 | 功能 | 参考文献 |
---|---|---|---|
ESCRT-0 | N.I. | ||
VPS23A (AT3G12400) | 膜蛋白内吞分选; 非生物逆境胁迫应答调控; 细胞分裂; 病毒复制 | 2020 | |
VPS23B (AT5G13860) | 病毒复制 | 2009 | |
ESCRT-I | VPS28A (AT4G21560) | 胚胎发育; 生长素响应; 膜蛋白内吞分选; 液泡发育 | 2020 |
VPS28B (AT4G05000) | 胚胎发育; 生长素响应; 膜蛋白内吞分选; 液泡发育; 植物免疫 | 2020 | |
VPS37-1 (AT3G53120) | 植物免疫 | 2013 | |
VPS37-2 (AT2G36680) | |||
VPS22 (AT4G27040) | 水稻主根生长; 胚乳灌浆 | 2013 | |
ESCRT-II | VPS25 (AT4G19003) | 生长素响应; 主根生长 | 2014 |
VPS36 (AT5G04920) | 胚胎发育; 主根生长; MVB/PVC发育; 液泡发育; 膜蛋白内吞分选 | 2017 | |
VPS2.1 (AT2G06530) | 胚胎发育; MVB/PVC发育; 膜蛋白内吞分选; 自噬途径 | 2020 | |
VPS2.2 (AT5G44560) | |||
VPS2.3 (AT1G03950) | |||
VPS20.1 (AT5G63880) | MVB/PVC发育; 膜蛋白内吞分选; 病毒复制 | 2014 | |
ESCRT-III | VPS20.2 (AT5G09260) | ||
SNF7A (AT2G19830) | MVB/PVC发育; 膜蛋白内吞分选; 病毒复制 | 2014 | |
SNF7B (AT4G29160) | MVB/PVC发育; 植物发育; 病毒复制 | 2021 | |
VPS24-1 (AT5G22950) | MVB/PVC发育; 膜蛋白内吞分选; 病毒复制 | 2019 | |
VPS24-2 (AT3G45000) | |||
CHMP1A (AT1G73030) | 胚胎发育; MVB/PVC发育; 膜蛋白内吞分选, 自噬途径 | 2015 | |
ESCRT-III辅助蛋白 | CHMP1B (AT1G17730) | 胚胎发育; MVB/PVC发育; 膜蛋白内吞分选; 自噬途径 | 2015 |
VPS60-1 (AT3G10640) | |||
VPS60-2 (AT5G04850) | |||
CHMP7 (AT3G62080) | 衰老; 非生物逆境胁迫应答调控 | 2016 | |
ISTL (AT1G34220) | MVB/PVC发育; 植物发育; 植物免疫 | 2016 | |
VPS4/SKD1复合体 | VPS4/SKD1 (AT2G27600) | MVB/PVC发育; 膜蛋白内吞分选; 病毒复制; 植物免疫 | 2016 |
LIP5 (AT4G26750) | MVB/PVC发育; 植物发育; 膜蛋白内吞分选; 植物免疫; 非生物逆境胁迫应答调控 | 2016 | |
FREE1 (AT1G20110) | MVB/PVC发育; 液泡发育; 膜蛋白内吞分选; 自噬途径; 非生物逆境胁迫应答调控 | 2020 | |
植物特有蛋白 | FYVE4 (AT1G61690) | MVB/PVC发育; 膜蛋白内吞分选 | 2021 |
PROS (AT4G24370) | VPS4/SKD1复合体活性调控; 细胞延伸 | 2014 | |
BRAF (AT5G14020) | MVB/PVC发育; 与FREE1竞争性结合VPS23A | 2018 | |
RST1 (AT3G27670) | 胚胎发育; 茎角质层蜡的分布; 植物免疫; MVB/ PVC发育 | 2019 |
图1 拟南芥中内体蛋白分选转运装置(ESCRT)的作用机制及泛素化的膜蛋白内吞过程 胞外蛋白和营养物质及新合成的蛋白分别通过蛋白内吞和分泌途径进入反面高尔基体(TGN)。经泛素化修饰的膜蛋白被ESCRT复合物识别, 并以依赖ESCRT的作用机制通过内腔泡(ILVs)进入MVB/PVC内腔, MVB/PVC与液泡融合, 最终使货物蛋白进入液泡中降解, 与此同时ESCRT-III复合体在VPS4/SKD1 ATP水解酶的作用下解离, 进入下一个循环。PM: 质膜; MVB/PVC: 多囊泡体/液泡前体
Figure 1 The endosomal sorting complex required for transport (ESCRT) mechanism and the endocytosis of ubiquitinated membrane proteins in Arabidopsis Extracellular proteins, materials and newly synthesized proteins are transported to trans Golgi network (TGN) via the endocytic or the secretory pathway, respectively. The ubiquitinated membrane proteins are then recognized by ESCRT machinery and be transported into the lumen of MVB/PVC via intraluminal vesicles (ILVs). After membrane fusion of MVB/PVC and vacuole, the cargo proteins are then transported to vacuole for degradation.The ESCRT-III complex is finally released from MVB/PVC membrane and the components are disassembled from each other by the activation of VPS4/SKD1 ATPase and recycled. PM: Plasma membrane; MVB/PVC: Multivesicular body/prevacuolar compartment
图2 类TOM1 (TOL)家族蛋白与动物及酵母ESCRT-0组分蛋白的氨基酸序列比对 横线标注区域分别表示VHS和GAT结构域。
Figure 2 Amino acid sequences alignment of TOM1-like (TOL) family proteins in plant and ESCRT-0 components in animal and yeast Transverse line region indicate the VHS domain and GAT domain, respectively.
图3 不同物种中ESCRT-I组分蛋白(VPS23 (A)、VPS28 (B)和VPS37 (C))间的氨基酸序列比对 横线区域表示UEV结构域, 虚线框中表示氨基酸保守区域。
Figure 3 Sequences alignment of ESCRT-I components (VPS23 (A), VPS28 (B) and VPS37 (C)) from different organisms Transverse line and dashed box regions indicate UEV domain and conserved amino acids, respectively.
图4 不同物种中ESCRT-III组分蛋白(VPS2 (A)、VPS20 (B)、VPS24 (C)和SNF7 (D))间的氨基酸序列比对 横线区域分别表示保守的CC结构域和SNF7结构域。
Figure 4 Sequences alignment of ESCRT-III components (VPS2 (A), VPS20 (B), VPS24 (C) and SNF7 (D)) from different organisms Transverse lines indicate conserved CC domain and SNF7 domain, respectively.
[1] | 崔勇, 庄小红, 沈锦波, 高彩吉, 姜里文 (2019). 植物内膜系统细胞器生物发生及功能的分子机制研究. 中国科学: 生命科学 49, 1679-1694. |
[2] | 郭萌萌, 陈明, 刘荣榜, 马有志, 李连成, 徐兆师, 张小红 (2014). 拟南芥液泡分拣蛋白AtVPS25调控植物生长素响应的功能分析. 中国农业科学 47, 3501-3512. |
[3] | 夏恒传, 张春霞, 冯凡, 袁弋, 周阳, 刘晓勇, 朱克明, 姚勤, 陈克平 (2013). 多囊体生物发生和蛋白质分拣——ESCRT、Vps4、Ubiquitination一个都不能少. 生物化学与生物物理进展 40, 103-117. |
[4] | 严旭, 徐梅, 王玉同, 潘伟槐, 寿建昕, 潘建伟, 王超 (2022). 植物胞吞和胞吐的耦合调控. 植物学报 57, 375-387. |
[5] | 赵雅惠, 吴旻, 林福呈, 刘小红 (2017). 内体分拣转运复合体的组成及其功能研究. 中国细胞生物学学报 39, 215-222. |
[6] | Babst M, Katzmann DJ, Estepa-Sabal EJ, Meerloo T, Emr SD (2002). ESCRT-III: an endosome-associated heterooli- gomeric protein complex required for MVB sorting. Dev Cell 3, 271-282. |
[7] | Barajas D, Jiang Y, Nagy PD (2009). A unique role for the host ESCRT proteins in replication of tomato bushy stunt virus. PLoS Pathog 5, e1000705. |
[8] | Belda-Palazon B, Rodriguez L, Fernandez MA, Castillo MC, Anderson EM, Gao CJ, Gonzalez-Guzman M, Peirats-Llobet M, Zhao Q, De Winne N, Gevaert K, De Jaeger G, Jiang LW, León J, Mullen RT, Rodriguez PL (2016). FYVE1/FREE1 interacts with the PYL4 ABA receptor and mediates its delivery to the vacuolar degradation pathway. Plant Cell 28, 2291-2311. |
[9] | Buono RA, Paez-Valencia J, Miller ND, Goodman K, Spitzer C, Spalding EP, Otegui MS (2016). Role of SKD1 regulators LIP5 and IST1-LIKE1 in endosomal sorting and plant development. Plant Physiol 171, 251-264. |
[10] | Cai Y, Zhuang XH, Gao CJ, Wang XF, Jiang LW (2014). The Arabidopsis endosomal sorting complex required for Transport III regulates internal vesicle formation of the prevacuolar compartment and is required for plant development. Plant Physiol 165, 1328-1343. |
[11] | Chen XB, Goodwin SM, Liu XL, Chen XL, Bressan RA, Jenks MA (2005). Mutation of the RESURRECTION1 locus of Arabidopsis reveals an association of cuticular wax with embryo development. Plant Physiol 139, 909-919. |
[12] | Cui Y, Cao WH, He YL, Zhao Q, Wakazaki M, Zhuang XH, Gao JY, Zeng YL, Gao CJ, Ding Y, Wong HY, Wong WS, Lam HK, Wang PF, Ueda T, Rojas-Pierce M, Toyooka K, Kang BH, Jiang LW (2019). A whole-cell electron tomography model of vacuole biogenesis in Arabidopsis root cells. Nat Plants 5, 95-105. |
[13] | Cui Y, Zhao Q, Hu S, Jiang LW (2020). Vacuole biogenesis in plants: how many vacuoles, how many models? Trends Plant Sci 25, 538-548. |
[14] | Gao CJ, Luo M, Zhao Q, Yang RZ, Cui Y, Zeng YL, Xia J, Jiang LW (2014). A unique plant ESCRT component, FREE1, regulates multivesicular body protein sorting and plant growth. Curr Biol 24, 2556-2563. |
[15] | Gao CJ, Zhuang XH, Cui Y, Fu X, He YL, Zhao Q, Zeng YL, Shen JB, Luo M, Jiang LW (2015). Dual roles of an Arabidopsis ESCRT component FREE1 in regulating vacuolar protein transport and autophagic degradation. Proc Natl Acad Sci USA 112, 1886-1891. |
[16] | Gao CJ, Zhuang XH, Shen JB, Jiang LW (2017). Plant ESCRT complexes: moving beyond endosomal sorting. Trends Plant Sci 22, 986-998. |
[17] | García-León M, Cuyas L, El-Moneim DA, Rodriguez L, Belda-Palazón B, Sanchez-Quant E, Fernández Y, Roux B, Zamarreño ÁM, García-Mina JM, Nussaume L, Rodriguez PL, Paz-Ares J, Leonhardt N, Rubio V (2019). Arabidopsis ALIX regulates stomatal aperture and turnover of abscisic acid receptors. Plant Cell 31, 2411-2429. |
[18] | Ge CN, Gao CJ, Chen QG, Jiang LW, Zhao YD (2019). ESCRT-dependent vacuolar sorting and degradation of the auxin biosynthetic enzyme YUC1 flavin monooxygenase. J Integr Plant Biol 61, 968-973. |
[19] | Haas TJ, Sliwinski MK, MartíNez DE, Preuss M, Ebine K, Ueda T, Nielsen E, Odorizzi G, Otegui MS (2007). The Arabidopsis AAA ATPase SKD1 is involved in multivesicular endosome function and interacts with its positive regulator LYST-INTERACTING PROTEIN5. Plant Cell 19, 1295-1312. |
[20] | Henne WM, Buchkovich NJ, Emr SD (2011). The ESCRT pathway. Dev Cell 21, 77-91. |
[21] | Hierro A, Sun J, Rusnak AS, Kim J, Prag G, Emr SD, Hurley JH (2004). Structure of the ESCRT-II endosomal trafficking complex. Nature 431, 221-225. |
[22] | Hu S, Li Y, Shen JB (2020). A diverse membrane interaction network for plant multivesicular bodies: roles in proteins vacuolar delivery and unconventional secretion. Front Plant Sci 11, 425. |
[23] | Isono E (2020). TOL keepers for ubiquitin-mediated trafficking routes in plant cells. Mol Plant 13, 685-687. |
[24] | Isono E, Kalinowska K (2017). ESCRT-dependent degradation of ubiquitylated plasma membrane proteins in plants. Curr Opin Plant Biol 40, 49-55. |
[25] | Isono E, Katsiarimpa A, Müller IK, Anzenberger F, Stierhof YD, Geldner N, Chory J, Schwechheimer C (2010). The deubiquitinating enzyme AMSH3 is required for intracellular trafficking and vacuole biogenesis in Arabidopsis thaliana. Plant Cell 22, 1826-1837. |
[26] | Jimenez AJ, Maiuri P, Lafaurie-Janvore J, Divoux S, Piel M, Perez F (2014). ESCRT machinery is required for plasma membrane repair. Science 343, 1247136. |
[27] | Johnson N, West M, Odorizzi G (2017). Regulation of yeast ESCRT-III membrane scission activity by the Doa4 ubiquitin hydrolase. Mol Biol Cell 28, 661-672. |
[28] | Kalinowska K, Nagel MK, Goodman K, Cuyas L, Anzenberger F, Alkofer A, Paz-Ares J, Braun P, Rubio V, Otegui MS, Isono E (2015). Arabidopsis ALIX is required for the endosomal localization of the deubiquitinating enzyme AMSH3. Proc Natl Acad Sci USA 112, E5543- E5551. |
[29] | Katsiarimpa A, Anzenberger F, Schlager N, Neubert S, Hauser MT, Schwechheimer C, Isono E (2011). The Arabidopsis deubiquitinating enzyme AMSH3 interacts with ESCRT-III subunits and regulates their localization. Plant Cell 23, 3026-3040. |
[30] | Katsiarimpa A, Kalinowska K, Anzenberger F, Weis C, Ostertag M, Tsutsumi C, Schwechheimer C, Brunner F, Huckelhoven R, Isono E (2013). The deubiquitinating enzyme AMSH1 and the ESCRT-III subunit VPS2.1 are required for autophagic degradation in Arabidopsis. Plant Cell 25, 2236-2252. |
[31] | Korbei B, Moulinier-Anzola J, De-Araujo L, Lucyshyn D, Retzer K, Khan MA, Luschnig C (2013). Arabidopsis TOL proteins act as gatekeepers for vacuolar sorting of PIN2 plasma membrane protein. Curr Biol 23, 2500-2505. |
[32] | Kostelansky MS, Schluter C, Tam YYC, Lee S, Ghirlando R, Beach B, Conibear E, Hurley JH (2007). Molecular architecture and functional model of the complete yeast ESCRT-I heterotetramer. Cell 129, 485-498. |
[33] | Kumar B, Dutta D, Iqbal J, Ansari MA, Roy A, Chikoti L, Pisano G, Veettil MV, Chandran B (2016). ESCRT-I protein Tsg101 plays a role in the post-macropinocytic trafficking and infection of endothelial cells by Kaposi's sarcoma-associated Herpesvirus. PLoS Pathog 12, e1005-960. |
[34] | Li HB, Li YZ, Zhao Q, Li TT, Wei J, Li BY, Shen WJ, Yang C, Zeng YL, Rodriguez PL, Zhao YD, Jiang LW, Wang XJ, Gao CJ (2019). The plant ESCRT component FREE1 shuttles to the nucleus to attenuate abscisic acid signaling. Nat Plants 5, 512-524. |
[35] | Liu CL, Zeng YL, Li HB, Yang C, Shen WJ, Xu M, Xiao ZD, Chen TS, Li BY, Cao WH, Jiang LW, Otegui MS, Gao CJ (2021). A plant-unique ESCRT component, FYVE4, regulates multivesicular endosome biogenesis and plant growth. New Phytol 231, 193-209. |
[36] | Liu JY, Wang YN, Cheng YF (2020). The ESCRT-I components VPS28A and VPS28B are essential for auxin- mediated plant development. Plant J 104, 1617-1634. |
[37] | Mackey D, Holt III BF, Wiig A, Dangl JL (2002). RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108, 743-754. |
[38] | Mang HG, Laluk KA, Parsons EP, Kosma DK, Cooper BR, Park HC, AbuQamar S, Boccongelli C, Miyazaki S, Consiglio F, Chilosi G, Bohnert HJ, Bressan RA, Mengiste T, Jenks MA (2009). The Arabidopsis RESURRECTION1 gene regulates a novel antagonistic interaction in plant defense to biotrophs and necrotrophs. Plant Physiol 151, 290-305. |
[39] | Morita E, Sandrin V, Chung HY, Morham SG, Gygi SP, Rodesch CK, Sundquist WI (2007). Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J 26, 4215-4227. |
[40] | Norgan AP, Davies BA, Azmi IF, Schroeder AS, Payne JA, Lynch GM, Xu ZH, Katzmann DJ (2013). Relief of autoinhibition enhances Vta1 activation of Vps4 via the Vps4 stimulatory element. J Biol Chem 288, 26147-26156. |
[41] | Raab M, Gentili M, De Belly H, Thiam HR, Vargas P, Jimenez AJ, Lautenschlaeger F, Voituriez R, Lennon- Duménil AM, Manel N, Piel M (2016). ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352, 359-362. |
[42] | Radulovic M, Schink KO, Wenzel EM, Nähse V, Bongiovanni A, Lafont F, Stenmark H (2018). ESCRT-mediated lysosome repair precedes lysophagy and promotes cell survival. EMBO J 37, e99753. |
[43] | Reyes FC, Buono RA, Roschzttardtz H, Di Rubbo S, Yeun LH, Russinova E, Otegui MS (2014). A novel endosomal sorting complex required for transport (ESCRT) component in Arabidopsis thaliana controls cell expansion and development. J Biol Chem 289, 4980-4988. |
[44] | Schöneberg J, Lee IH, Iwasa JH, Hurley JH (2017). Reverse-topology membrane scission by the ESCRT proteins. Nat Rev Mol Cell Biol 18, 5-17. |
[45] | Schwihla M, Korbei B (2020). The beginning of the end: initial steps in the degradation of plasma membrane proteins. Front Plant Sci 11, 680. |
[46] | Shen JB, Gao CJ, Zhao Q, Lin YS, Wang XF, Zhuang XH, Jiang LW (2016). AtBRO1 functions in ESCRT-I complex to regulate multivesicular body protein sorting. Mol Plant 9, 760-763. |
[47] | Shen JB, Zhao Q, Wang XF, Gao CJ, Zhu Y, Zeng YL, Jiang LW (2018). A plant Bro1 domain protein BRAF regulates multivesicular body biogenesis and membrane protein homeostasis. Nat Commun 9, 3784. |
[48] | Spallek T, Beck M, Ben Khaled S, Salomon S, Bourdais G, Schellmann S, Robatzek S (2013). ESCRT-I mediates FLS2 endosomal sorting and plant immunity. PLoS Genet 9, e1004035. |
[49] | Spitzer C, Li FQ, Buono R, Roschzttardtz H, Chung T, Zhang M, Osteryoung KW, Vierstra RD, Otegui MS (2015). The endosomal protein CHARGED MULTIVESICULAR BODY PROTEIN1 regulates the autophagic turnover of plastids in Arabidopsis. Plant Cell 27, 391-402. |
[50] | Spitzer C, Reyes FC, Buono R, Sliwinski MK, Haas TJ, Otegui MS (2009). The ESCRT-related CHMP1A and B proteins mediate multivesicular body sorting of auxin carriers in Arabidopsis and are required for plant development. Plant Cell 21, 749-766. |
[51] | Teis D, Saksena S, Emr SD (2008). Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation. Dev Cell 15, 578-589. |
[52] | Valencia JP, Goodman K, Otegui MS (2016). Endocytosis and endosomal trafficking in plants. Annu Rev Plant Biol 67, 309-335. |
[53] | Van Leeuwen W, Ökrész L, Bögre L, Munnik T (2004). Learning the lipid language of plant signaling. Trends Plant Sci 9, 378-384. |
[54] | Wang F, Shang YF, Fan BF, Yu JQ, Chen ZX (2014). Arabidopsis LIP5, a positive regulator of multivesicular body biogenesis, is a critical target of pathogen-responsive MAPK cascade in plant basal defense. PLoS Pathog 10, e1004243. |
[55] | Wang HJ, Hsu YW, Guo CL, Jane WN, Wang H, Jiang LW, Jauh GY (2017). VPS36-dependent multivesicular bodies are critical for plasmamembrane protein turnover and vacuolar biogenesis. Plant Physiol 173, 566-581. |
[56] | Xia FN, Zeng BQ, Liu HS, Qi H, Xie LJ, Yu LJ, Chen QF, Li JF, Chen YQ, Jiang LW, Xiao S (2020). SINAT E3 ubiquitin ligases mediate FREE1 and VPS23A degradation to modulate abscisic acid signaling. Plant Cell 32, 3290-3310. |
[57] | Xia ZL, Huo YJ, Wei YY, Chen QS, Xu ZW, Zhang W (2016). The Arabidopsis LYST INTERACTING PROTEIN 5 acts in regulating abscisic acid signaling and drought response. Front Plant Sci 7, 758. |
[58] | Xiao ZD, Yang C, Liu CL, Yang LM, Yang SH, Zhou J, Li FQ, Jiang LW, Xiao S, Gao CJ, Shen WJ (2020). SINAT E3 ligases regulate the stability of the ESCRT component FREE1 in response to iron deficiency in plants. J Integr Plant Biol 62, 1399-1417. |
[59] | Yang HL, Liu J, Lin JL, Deng LB, Fan SH, Guo Y, Sun FM, Hua W (2016). Overexpression of CHMP7 from rapeseed and Arabidopsis causes dwarfism and premature senescence in Arabidopsis. J Plant Physiol 204, 16-26. |
[60] | Yoshinari A, Korbei B, Takano J (2018). TOL proteins mediate vacuolar sorting of the borate transporter BOR1 in Arabidopsis thaliana. Soil Sci Plant Nutr 64, 598-605. |
[61] | Yu FF, Lou LJ, Tian MM, Li QL, Ding YL, Cao XQ, Wu YR, Belda-Palazon B, Rodriguez PL, Yang SH, Xie Q (2016). ESCRT-I component VPS23A affects ABA signaling by recognizing ABA receptors for endosomal degradation. Mol Plant 9, 1570-1582. |
[62] | Zhang XQ, Hou P, Zhu HT, Li GD, Liu XG, Xie XM (2013). Knockout of the VPS22 component of the ESCRT-II complex in rice (Oryza sativa L.) causes chalky endosperm and early seedling lethality. Mol Biol Rep 40, 3475-3481. |
[63] | Zhao Q, Gao CJ, Lee P, Liu L, Li SF, Hu TJ, Shen JB, Pan SY, Ye H, Chen YR, Cao WH, Cui Y, Zeng P, Yu S, Gao YB, Chen L, Mo BX, Liu X, Xiao S, Zhao YD, Zhong SL, Chen XM, Jiang LW (2015). Fast-suppressor screening for new components in protein trafficking, organelle bioge- nesis and silencing pathway in Arabidopsis thaliana using DEX-inducible FREE1-RNAi plants. J Genet Genomics 42, 319-330. |
[64] | Zhao Q, Shen JB, Gao CJ, Cui Y, Wang YY, Cui J, Cheng LX, Cao WH, Zhu Y, Huang SX, Zhou QZ, Leong CK, Leung KP, Chen XM, Jiang LW (2019). RST1 is a FREE1 suppressor that negatively regulates vacuolar traf- ficking in Arabidopsis. Plant Cell 31, 2152-2168. |
[1] | 严旭, 徐梅, 王玉同, 潘伟槐, 潘建伟, 寿建昕, 王超. 植物胞吞和胞吐的耦合调控[J]. 植物学报, 2022, 57(3): 375-387. |
[2] | 曹文杰, 李贵生. 生长素输出载体PIN蛋白的质膜定位机制[J]. 植物学报, 2016, 51(2): 265-273. |
[3] | 薛轶群, 宋凯, 范路生, 万迎朗, 林金星. pH敏感型荧光蛋白及其在植物细胞生物学中的应用[J]. 植物学报, 2015, 50(3): 394-404. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||