植物学报 ›› 2020, Vol. 55 ›› Issue (2): 216-227.DOI: 10.11983/CBB19028
收稿日期:
2019-02-18
接受日期:
2019-09-24
出版日期:
2020-03-01
发布日期:
2020-02-12
通讯作者:
武荣花
基金资助:
Tairan Zhang1,Hechen Zhang2,Ronghua Wu1,*()
Received:
2019-02-18
Accepted:
2019-09-24
Online:
2020-03-01
Published:
2020-02-12
Contact:
Ronghua Wu
摘要:
花色是观赏植物的重要特征, 在自然界中蓝色花占比很少, 很多观赏植物都缺少蓝色种质。因此, 研究蓝色花形成的分子机理对于蓝色花定向育种具有重要意义。研究表明, 花色的形成主要是通过花青苷积累, 花青素通过糖基化形成花青苷, 再通过酰基、甲基化修饰及金属离子络合反应, 在特定的液泡pH环境中呈现出稳定的蓝色。该文从花青苷合成与代谢途径入手, 对蓝色花形成关键基因功能、花青苷各位点酰化的影响、金属离子的作用、液泡pH值相关基因研究及蓝色花分子育种等方面进行综述。
张泰然,张和臣,武荣花. 蓝色花形成分子机理研究进展. 植物学报, 2020, 55(2): 216-227.
Tairan Zhang,Hechen Zhang,Ronghua Wu. Recent Advances on Blue Flower Formation. Chinese Bulletin of Botany, 2020, 55(2): 216-227.
图1 花青苷生物合成途径 PAL: 苯丙氨酸氨裂解酶; C4H: 肉桂酸-4-羟化酶; 4CL: 4-香豆酸CoA连接酶; CHS: 查尔酮合成酶; CHI: 查尔酮异构酶; F3H: 黄烷酮3-羟化酶; F3′H: 类黄酮3′-羟化酶; F3′5′H: 类黄酮3′,5′-羟化酶; DFR: 二氢黄酮醇还原酶; ANS: 花色素合酶; GT: 糖基转移酶; AT: 酰基转移酶; MT: 甲基转移酶; AN9: 花青苷合成基因9
Figure 1 The anthocyanin biosynthetic pathway PAL: Phenylalanine ammonialyase; C4H: Cinnamate 4-hydroxylase; 4CL: 4-coumaroyl-CoA ligase; CHS: Chalcone syn-thase; CHI: Chalcone isomerase; F3H: Flavanone 3-hydroxylase; F3′H: Flavonoid 3′-hydroxylase; F3′,5′H: Flavonoid 3′,5′-hydroxylase; DFR: Dihydroflavonol reductase; ANS: Anthocyanin synthase; GT: Glycosyltransferases; AT: Acyltransfer-ases; MT: Methyltransferase; AN9: Anthocyanin 9
图4 金属花青苷组分结构(Yoshida et al., 2009b) A1-A4为花青苷类物质; F1-F4为黄酮类物质。
Figure 4 Structure of metalloanthocyanin component (Yoshida et al., 2009b) A1-A4 are anthocyanins; F1-F4 are flavonoids.
金属花青苷 | 来源 | 组成成分 | ||
---|---|---|---|---|
花青苷 | 黄酮 | 金属离子 | ||
鸭跖草苷 | 鸭跖草 (Commelina communis) | A1 | F1 | Mg2+ |
原矢车菊苷 | 矢车菊 (Centaurea cyanus) | A2 | F2 | Mg2+, Fe3+ |
原飞燕草苷 | 龙胆鼠尾草 (Salvia patens) | A1 | F3 | Mg2+ |
含氰鼠尾草苷 | 天蓝鼠尾草 (S. uliginosa) | A3 | F3 | Mg2+ |
粉蝶花苷 | 粉蝶花 (Nemophila menziesii) | A4 | F4 | Mg2+, Fe3+ |
表1 5种金属花青苷的成分(Yoshida et al., 2009a)
Table 1 Composition of five metalloanthocyanin (Yoshida et al., 2009a)
金属花青苷 | 来源 | 组成成分 | ||
---|---|---|---|---|
花青苷 | 黄酮 | 金属离子 | ||
鸭跖草苷 | 鸭跖草 (Commelina communis) | A1 | F1 | Mg2+ |
原矢车菊苷 | 矢车菊 (Centaurea cyanus) | A2 | F2 | Mg2+, Fe3+ |
原飞燕草苷 | 龙胆鼠尾草 (Salvia patens) | A1 | F3 | Mg2+ |
含氰鼠尾草苷 | 天蓝鼠尾草 (S. uliginosa) | A3 | F3 | Mg2+ |
粉蝶花苷 | 粉蝶花 (Nemophila menziesii) | A4 | F4 | Mg2+, Fe3+ |
[1] | 戴思兰, 洪艳 ( 2016). 基于花青素苷合成和呈色机理的观赏植物花色改良分子育种. 中国农业科学 49, 529-542. |
[2] | 李慧波 ( 2013). 影响单子叶植物蓝色花蓝色形成主要因子的研究. 硕士论文. 杨凌: 西北农林科技大学. pp.30-45. |
[3] | 李云, 赵昶灵, 杨晓娜, 李会容, 周燕琼, 苏丽 ( 2010). 花色苷分子结构与其稳定性以及呈色关系的研究进展. 云南农业大学学报 25, 712-720. |
[4] | 刘爱玲 ( 2016). 蓝色相关基因转化‘Robina’百合的研究. 硕士论文. 杨凌: 西北农林科技大学. pp.28-31. |
[5] | 刘妮妮, 娄倩, 刘雅莉 ( 2014). 单子叶植物蓝色花基因工程育种方法研究. 见: 中国观赏园艺研究进展(2014). 青岛: 中国园艺学会观赏园艺专业委员会. pp.158-164. |
[6] | 祁银燕 ( 2013). 两种单子叶植物蓝色花相关基因的功能验证. 博士论文. 杨凌: 西北农林科技大学. pp.18-64. |
[7] | 曲爱爱 ( 2016). 菊花遗传转化体系建立及VtF3'5'H基因转化‘南农粉翠’的研究. 硕士论文. 南京: 南京农业大学. pp.23-29. |
[8] | 杨少勇, 安银岭, 樊国盛, 毕望富, 王沙生 ( 2003). 蓝色花植物花色素的着色机理. 北京林业大学学报 25(5), 68-75. |
[9] | 杨少勇, 樊国盛 ( 2002). 云南省蓝色花植物研究初探. 西南林学院学报 22(3), 11-15, 19. |
[10] | 钟培星, 王亮生, 李珊珊, 徐彦军, 朱满兰 ( 2012). 芍药开花过程中花色和色素的变化. 园艺学报 39, 2271-2282. |
[11] | Andersen ØM, Fossen T ( 1995). Anthocyanins with an unusual acylation pattern from stem of Allium victorialis. Phytochemistry 40, 1809-1812. |
[12] | Bloor SJ ( 2001). Deep blue anthocyanins from blue Dianella berries. Phytochemistry 58, 923-927. |
[13] | Bombarely A, Moser M, Amrad A, Bao MZ, Bapaume L, Barry CS, Bliek M, Boersma MR, Borghi L, Bruggmann R, Bucher M, D′Agostino N, Davies K, Druege U, Dudareva N, Egea-Cortines M, Delledonne M, Fernandez-Pozo N, Franken P, Grandont L, Heslop-Harrison JS, Hintzsche J, Johns M, Koes R, Lv XD, Lyons E, Malla D, Martinoia E, Mattson NS, Morel P, Mueller LA, Muhlemann J, Nouri E, Passeri V, Pezzotti M, Qi QZ, Reinhardt D, Rich M, Richert-Pöggeler KR, Robbins TP, Schatz MC, Schranz ME, Schuurink RC, Schwarzacher T, Spelt K, Tang HB, Urbanus SL, Vandenbussche M, Vijverberg K, Villarino GH, Warner RM, Weiss J, Yue Z, Zethof J, Quattrocchio F, Sims TL, Kuhlemeier C ( 2016). Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida. Nat Plant 2, 16074. |
[14] | Brugliera F, Tanaka Y, Mason J ( 2013). Flavonoid 3',5' hydroxylase gene sequences and uses therefor. US patent, 8445748. 2013-05-21. |
[15] | Brugliera F, Tao GQ, Tems U, Kalc G, Mouradova E, Price K, Stevenson K, Nakamura N, Stacey L, Katsumoto Y, Tanaka Y, Mason JG ( 2013). Violet/blue chrysanthemums—metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors. Plant Cell Physiol 54, 1696-1710. |
[16] | Dare AP, Tomes S, Jones M, McGhie TK, Stevenson DE, Johnson RA, Greenwood DR, Hellens RP ( 2013). Phenotypic changes associated with RNA interference silencing of chalcone synthase in apple ( Malus × domestica). Plant J 74, 398-410. |
[17] | de Vlaming P, Schram AW, Wiering H ( 1983). Genes affecting flower colour and pH of flower limb homogenates in Petunia hybrida. Theor Appl Genet 66, 271-278. |
[18] | Dehghan S, Sadeghi M, Pöppel A, Fischer R, Lakes- Harlan R, Kavousi HR, Vilcinskas A, Rahnamaeian M ( 2014). Differential inductions of phenylalanine ammonia-lyase and chalcone synthase during wounding, salicylic acid treatment, and salinity stress in safflower, Carthamus tinctorius. Biosci Rep 34, e00114. |
[19] | Faraco M, Li YB, Li SJ, Spelt C, Di Sansebastiano GP, Reale L, Ferranti F, Verweij W, Koes R, Quattrocchio FM ( 2017). A tonoplast P3B-ATPase mediates fusion of two types of vacuoles in petal cells. Cell Rep 19, 2413-2422. |
[20] | Faraco M, Spelt C, Bliek M, Verweij W, Hoshino A, Espen L, Prinsi B, Jaarsma R, Tarhan E, de Boer AH, Di Sansebastiano GP, Koes R, Quattrocchio FM ( 2014). Hyperacidification of vacuoles by the combined action of two different P-ATPases in the tonoplast determines flower color. Cell Rep 6, 32-43. |
[21] | Fedenko VS, Shemet SA, Landi M ( 2017). UV-vis spectroscopy and colorimetric models for detecting anthocyanin-metal complexes in plants: an overview of in vitro and in vivo techniques. J Plant Physiol 212, 13-28. |
[22] | Fukada-Tanaka S, Inagaki Y, Yamaguchi T, Saito N, Iida S ( 2000). Colour-enhancing protein in blue petals. Nature 407, 581. |
[23] | Goto T, Kondo T ( 1991). Structure and molecular stacking of anthocyanins—flower color variation. Angew Chem Int Ed 30, 17-33. |
[24] | Holton TA ( 2000). Transgenic plants exhibiting altered flower color and methods for producing same. US patent, 6080920. 2000-06-27. |
[25] | Holton TA, Brugliera F, Lester DR, Tanaka Y, Hyland CD, Menting JGT, Lu CY, Farcy E, Stevenson TW, Cornish EC ( 1993). Cloning and expression of cytochrome P450 genes controlling flower colour. Nature 366, 276-279. |
[26] | Hondo T, Yoshida K, Nakagawa A, Kawai T, Tamura H, Goto T ( 1992). Structural basis of blue-colour development in flower petals from Commelina communis. Nature 358, 515-518. |
[27] | Huang H, Hu K, Han KT, Xiang QY, Dai SL ( 2013). Flower colour modification of chrysanthemum by suppression of F3'H and overexpression of the exogenous Senecio cruentus F3'5'H gene. PLoS One 8, e74395. |
[28] | Ishii I, Sakaguchi K, Fujita K, Ozeki Y, Miyahara T ( 2017). A double knockout mutant of acyl-glucose-dependent anthocyanin glucosyltransferase genes in Delphinium grandiflorum. J Plant Physiol 216, 74-78. |
[29] | Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton TA, Karan M, Nakamura N, Yonekura-Sakakibara K, Togami J, Pigeaire A, Tao GQ, Nehra NS, Lu CY, Dyson BK, Tsuda S, Ashikari T, Kusumi T, Mason JG, Tanaka Y ( 2007). Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48, 1589-1600. |
[30] | Kondo T, Ueda M, Tamura H, Yoshida K, Isobe M, Goto T ( 1994). Composition of protocyanin, a self-assembled supramolecular pigment from the blue cornflower, Centaurea cyanus. Angew Chem Int Ed 33, 978-979. |
[31] | Kühlbrandt W ( 2004). Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell Biol 5, 282-295. |
[32] | Markham KR, Mitchell KA, Boase MR ( 1997). Malvidin- 3- O-glucoside-5-O-(6-acetylglucoside) and its colour manifestation in ‘Johnson’s Blue’ and other ‘Blue’ geraniums. Phytochemistry 45, 417-423. |
[33] | Martens S, Teeri T, Forkmann G ( 2002). Heterologous expression of dihydroflavonol 4-reductases from various plants. FEBS Lett 531, 453-458. |
[34] | Matsufuji H, Kido H, Misawa H, Yaguchi J, Otsuki T, Chino M, Takeda M, Yamagata K ( 2007). Stability to light, heat, and hydrogen peroxide at different pH values and DPPH radical scavenging activity of acylated anthocyanins from red radish extract. J Agric Food Chem 55, 3692-3701. |
[35] | Meyer P, Heidmann I, Forkmann G, Saedler H ( 1987). A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330, 677-678. |
[36] | Miyahara T, Sakiyama R, Ozeki Y, Sasaki N ( 2013). Acyl-glucose-dependent glucosyltransferase catalyzes the final step of anthocyanin formation in Arabidopsis. J Plant Physiol 170, 619-624. |
[37] | Mori M, Kondo T, Yoshida K ( 2008). Cyanosalvianin, a supramolecular blue metalloanthocyanin, from petals of Salvia uliginosa. Phytochemistry 69, 3151-3158. |
[38] | Nakatsuka T, Mishiba KI, Kubota A, Abe Y, Yamamura S, Nakamura N, Tanaka Y, Nishihara M ( 2010). Genetic engineering of novel flower colour by suppression of anthocyanin modification genes in gentian. J Plant Physiol 167, 231-237. |
[39] | Negishi T, Oshima K, Hattori M, Kanai M, Mano S, Nishimura M, Yoshida K ( 2012). Tonoplast- and plasma membrane-localized aquaporin-family transporters in blue hydrangea sepals of aluminum hyperaccumulating plant. PLoS One 7, e43189. |
[40] | Nishizaki Y, Yasunaga M, Okamoto E, Okamoto M, Hirose Y, Yamaguchi M, Ozeki Y, Sasaki N ( 2013). p-Hydroxybenzoyl-glucose is a Zwitter donor for the biosynthesis of 7-polyacylated anthocyanin in Delphinium. Plant Cell 25, 4150-4165. |
[41] | Noda N ( 2018). Recent advances in the research and development of blue flowers. Breed Sci 68, 79-87. |
[42] | Noda N, Aida R, Kishimoto S, Ishiguro K, Fukuchi-Mizutani M, Tanaka Y, Ohmiya A ( 2013). Genetic engineering of novel bluer-colored chrysanthemums produced by accumulation of delphinidin-based anthocyanins. Plant Cell Physiol 54, 1684-1695. |
[43] | Noda N, Yoshioka S, Kishimoto S, Nakayama M, Douzono M, Tanaka Y, Aida R ( 2017). Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism. Sci Adv 3, e1602785. |
[44] | Ohnishi M, Fukada-Tanaka S, Hoshino A, Takada J, Inagaki Y, Iida S ( 2005). Characterization of a novel Na+/H+ antiporter gene InNHX2 and comparison of InNHX2 with InNHX1, which is responsible for blue flower coloration by increasing the vacuolar pH in the Japanese morning glory. Plant Cell Physiol 46, 259-267. |
[45] | Sasaki N, Nakayama T ( 2014). Achievements and perspectives in biochemistry concerning anthocyanin modification for blue flower coloration. Plant Cell Physiol 56, 28-40. |
[46] | Sasaki N, Nishizaki Y, Ozeki Y, Miyahara T ( 2014). The role of acyl-glucose in anthocyanin modifications. Molecules 19, 18747-18766. |
[47] | Sato M, Kawabe T, Hosokawa M, Tatsuzawa F, Doi M ( 2011). Tissue culture-induced flower-color changes in Saintpaulia caused by excision of the transposon inserted in the flavonoid 3′,5′ hydroxylase (F3′5′H) promoter. Plant Cell Rep 30, 929-939. |
[48] | Shoji K, Miki N, Nakajima N, Momonoi K, Kato C, Yoshida K ( 2007). Perianth bottom-specific blue color development in tulip cv. Murasakizuisho requires ferric ions. Plant Cell Physiol 48, 243-251. |
[49] | Sigurdson GT, Giusti MM ( 2014). Bathochromic and hyperchromic effects of aluminum salt complexation by anthocyanins from edible sources for blue color development. J Agric Food Chem 62, 6955-6965. |
[50] | Sigurdson GT, Robbins RJ, Collins TM, Giusti MM ( 2016). Evaluating the role of metal ions in the bathochromic and hyperchromic responses of cyanidin derivatives in acidic and alkaline pH. Food Chem 208, 26-34. |
[51] | Sigurdson GT, Robbins RJ, Collins TM, Giusti MM ( 2017a). Effects of hydroxycinnamic acids on blue color expression of cyanidin derivatives and their metal chelates. Food Chem 234, 131-138. |
[52] | Sigurdson GT, Robbins RJ, Collins TM, Giusti MM ( 2017b). Spectral and colorimetric characteristics of metal chelates of acylated cyanidin derivatives. Food Chem 221, 1088-1095. |
[53] | Sigurdson GT, Robbins RJ, Collins TM, Giusti MM ( 2018a). Impact of location, type, and number of glycosidic substitutions on the color expression of o-dihydroxylated anthocyanidins. Food Chem 268, 416-423. |
[54] | Sigurdson GT, Tang PP, Giusti MM ( 2018b). Cis-trans configuration of coumaric acid acylation affects the spectral and colorimetric properties of anthocyanins. Molecules 23, 598. |
[55] | Sun LL, Li Y, Li SS, Wu XJ, Hu BZ, Chang Y ( 2014). Identification and characterisation of DfCHS, a chalcone synthase gene regulated by temperature and ultraviolet in Dryopteris fragrans. Cell Mol Biol (Noisy-le-Grand, France) 60, 1-7. |
[56] | Tai DQ, Tian J, Zhang J, Song TT, Yao YC ( 2014). A Malus crabapple chalcone synthase gene, McCHS, regulates red petal color and flavonoid biosynthesis. PLoS One 9, e110570. |
[57] | Takamura T, Matsuzaki T ( 2015). Characteristics of F1 progenies obtained by crosses between bluish-violet flowered cyclamen and other cyclamen cultivars. Hort Res Japan 14, 412. |
[58] | Takeda K, Yanagisawa M, Kifune T, Kinoshita T, Timberlake CF ( 1994). A blue pigment complex in flowers of Salvia patens. Phytochemistry 35, 1167-1169. |
[59] | Tamura H, Kondo T, Goto T ( 1986). The composition of commelinin, a highly associated metalloanthocyanin present in the blue flower petals of Commelina communis. Tetrahedron Lett 27, 1801-1804. |
[60] | Tanaka Y, Brugliera F ( 2013). Flower colour and cytochromes P450. Philos Trans Roy Soc B Biol Sci 368, 20120432. |
[61] | Tanaka Y, Brugliera F, Chandler S ( 2009). Recent progress of flower colour modification by biotechnology. Int J Mol Sci 10, 5350-5369. |
[62] | Tanaka Y, Sasaki N, Ohmiya A ( 2008). Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54, 733-749. |
[63] | Tanaka Y, Tsuda S, Kusumi T ( 1998). Metabolic engineering to modify flower color. Plant Cell Physiol 39, 1119-1126. |
[64] | Verweij W, Spelt C, Di Sansebastiano GP, Vermeer J, Reale L, Ferranti F, Koes R, Quattrocchio F ( 2008). An H+ P-ATPase on the tonoplast determines vacuolar pH and flower colour . Nat Cell Biol 10, 1456-1462. |
[65] | Yoshida K, Miki N, Momonoi K, Kawachi M, Katou K, Okazaki Y, Uozumi N, Maeshima M, Kondo T ( 2009a). Synchrony between flower opening and petal-color change from red to blue in morning glory, Ipomoea tricolor cv. ‘Heavenly Blue’. Proc Jpn Acad Ser B 85, 187-197. |
[66] | Yoshida K, Mori M, Kondo T ( 2009b). Blue flower color development by anthocyanins: from chemical structure to cell physiology. Nat Prod Rep 26, 884-915. |
[67] | Yoshida K, Tojo K, Mori M, Yamashita K, Kitahara S, Noda M, Uchiyama S ( 2015). Chemical mechanism of petal color development of Nemophila menziesii by a metalloanthocyanin, nemophilin. Tetrahedron 71, 9123-9130. |
[68] | Yoshida K, Toyama Y, Kameda K, Kondo T ( 2000). Contribution of each caffeoyl residue of the pigment molecule of gentiodelphin to blue color development. Phytochemistry 54, 85-92. |
[69] | Yoshida K, Toyama-Kato Y, Kameda K, Kondo T ( 2003). Sepal color variation of Hydrangea macrophylla and vacuolar pH measured with a proton-selective microelectrode. Plant Cell Physiol 44, 262-268. |
[70] | Zeinipour M, Azadi P, Majd A, Kermani MJ, Irian S, Hosseini SM, Mii M ( 2018). Agroinfiltration: a rapid and reliable method to select suitable rose cultivars for blue flower production. Physiol Mol Biol Plant 24, 503-511. |
[71] | Zhao CL, Chen ZJ, Bai XS, Ding C, Long TJ, Wei FG, Miao KR ( 2014). Structure-activity relationships of anthocyanidin glycosylation. Mol Divers 18, 687-700. |
[72] | Zhao CL, Yu YQ, Chen ZJ, Wen GS, Wei FG, Zheng Q, Wang CD, Xiao XL ( 2017). Stability-increasing effects of anthocyanin glycosyl acylation. Food Chem 214, 119-128. |
[73] | Zhao DQ, Tao J ( 2015). Recent advances on the development and regulation of flower color in ornamental plants. Front Plant Sci 6, 261. |
[74] | Zhao DQ, Tao J, Han CX, Ge JT ( 2012). Flower color diversity revealed by differential expression of flavonoid biosynthetic genes and flavonoid accumulation in herbaceous peony ( Paeonia lactiflora Pall.). Mol Biol Rep 39, 11263-11275. |
[1] | 周延清, 王婉珅, 王向楠, 段红英. 地黄DNA分子标记与基因功能研究进展[J]. 植物学报, 2015, 50(5): 665-672. |
[2] | 谭玉朋, 李科, 兰芹英, 蒋湘宁, 盖颖. 植物组织中低聚糖乙酰化及毛细管气相色谱分析[J]. 植物学报, 2011, 46(3): 319-323. |
[3] | 魏松涛;迟伟;张立新;*. 高等植物碳循环基因工程研究进展[J]. 植物学报, 2008, 25(05): 516-525. |
[4] | 刘晓娜 付畅 黄永芬. 种子特异性启动子研究进展[J]. 植物学报, 2007, 24(02): 218-225. |
[5] | 刘立侠 柳青 许守民. 基因工程在改善植物油营养价值中的应用[J]. 植物学报, 2005, 22(05): 623-631. |
[6] | 曾宪东 余龙江 李为 杨英 吴云. 西南岩溶地区黄荆叶片碳酸酐酶的稳定性[J]. 植物学报, 2005, 22(02): 169-174. |
[7] | ;桑新华 吴忠义 黄丛林② 张潞生. 植物逆境抗性相关转录因子的研究进展[J]. 植物学报, 2004, 21(06): 700-708. |
[8] | 胡磊 郭蓓 陆海 邹祥旺 李悦 蒋湘宁. 植物组织中糖与糖醇乙酰化及毛细管气相色谱分析[J]. 植物学报, 2004, 21(06): 689-699. |
[9] | 代色平;包满珠. 矮牵牛育种研究进展[J]. 植物学报, 2004, 21(04): 385-391. |
[10] | 赵云鹏 陈发棣 郭维明. 观赏植物花色基因工程研究进展[J]. 植物学报, 2003, 20(01): 51-58. |
[11] | 滕年军 陈发棣. 基因工程在花卉遗传改良中的应用研究[J]. 植物学报, 2002, 19(05): 538-545. |
[12] | 贾庚祥 朱至清 李银心. 甜菜碱与植物耐盐基因工程[J]. 植物学报, 2002, 19(03): 272-279. |
[13] | 耿德贵 韩燕 王义琴 李文彬 孙勇如. 杜氏盐藻的耐盐机制研究进展和基因工程研究的展望[J]. 植物学报, 2002, 19(03): 290-295. |
[14] | 高双成 刘征 李润植. 转基因技术生产无籽果实的新策略[J]. 植物学报, 2002, 19(01): 49-55. |
[15] | 周丽英 杨丽涛 郑坚渝. 植物抗寒冻基因工程研究进展[J]. 植物学报, 2001, 18(03): 325-331. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||