植物学报 ›› 2015, Vol. 50 ›› Issue (6): 779-789.DOI: 10.11983/CBB14146
刘海娇1, 杜立群2, 林金星1,3, 李瑞丽3,,A;*()
收稿日期:
2014-08-07
接受日期:
2014-10-25
出版日期:
2015-11-01
发布日期:
2015-09-06
通讯作者:
李瑞丽
作者简介:
? 共同第一作者
基金资助:
Haijiao Liu1, Liqun Du2, Jinxing Lin1,3, Ruili Li3*
Received:
2014-08-07
Accepted:
2014-10-25
Online:
2015-11-01
Published:
2015-09-06
Contact:
Li Ruili
About author:
? These authors contributed equally to this paper
摘要: 环核苷酸门控离子通道(CNGC)是非选择性的阳离子通道, 可以直接被细胞内信使小分子——环核苷酸(cAMP和cGMP)活化。该通道蛋白包含6个跨膜α-螺旋, C端各具一个交叠的环核苷酸与钙调蛋白结合区。CNGC广泛存在于各种植物细胞中。研究表明, 模式植物拟南芥(Arabidopsis thaliana)的CNGC家族有20个成员, 分为4个亚群, 它们在抗病、花粉管生长、对Ca2+响应、抵抗重金属离子毒害和抗盐等多种信号途径中发挥重要作用, 协助植物细胞应对各种生物与非生物胁迫。该文简要介绍了CNGC的结构、表达谱及其调控因子, 并着重总结了近年来CNGC生物学功能的研究进展, 以期为今后系统开展其功能研究提供理论依据。
刘海娇, 杜立群, 林金星, 李瑞丽. 植物环核苷酸门控离子通道及其功能研究进展. 植物学报, 2015, 50(6): 779-789.
Haijiao Liu, Liqun Du, Jinxing Lin, Ruili Li. Recent Advances in Cyclic Nucleotide-gated Ion Channels with their Functions in Plants. Chinese Bulletin of Botany, 2015, 50(6): 779-789.
图1 动物(A)和植物(B)环核苷酸门控离子通道(CNGC)的膜拓扑结构示意图(Hua et al., 2003)。 跨膜域由6个α-螺旋(S1-S6)构成, S5和S6之间形成孔状结构(P loop)。动植物CNGCs的N和C末端均延伸至细胞胞质侧。动物CNGCs的CaMBD在N端, CNBD在C端。植物CNGCs的结构与动物CNGCs基本一致(除CaMBD在C端外)。
Figure 1 Predicted membrane topology and domain structures of a cyclic nucleotide-gated ion channels (CNGC) subunit from animal cells (A) and plant cells (B) (Hua et al., 2003) .The bulk of CNGC are made of 6 transmembrane α-helices (S1-S6), a pore structure (P) is formed between S5 and S6. Both the N- and C-termini of plant and animal CNGCs extend into the cytosolic side of the plasma membrane. The CaMBD in animal CNGCs is located at the N-terminus and its CNBD is at the C-terminus. The structure of plant CNGC is similar to its counterparts from animals except that the CaMBD is at the C-terminus.
图2 用邻接树法构建的CNGCs无根进化树(Finka et al., 2012) 从进化树可以看出, 来自植物和人类的CNGCs分为4种明显的基因簇: 基因簇I (绿色)由苔藓特有的CNGCs构成; 基因簇II (蓝色)仅由植物特有的CNGCs构成; 基因簇III (黑色)包含苔藓和种子植物的CNGCs, 由此又被称为陆生植物所特有的CN- GCs; 基因簇IV (品红), 仅包含人类的CNGCs。
Figure 2 Unrooted phylogenetic tree generated using neigh- bor joining method (Finka et al., 2012).The phylogenetic tree shows CNGCs from plants and human could be grouped into four distinct clusters: cluster I (green) containing moss-specific CNGCs; cluster II (blue) are higher plant CNGCs; cluster III (black), comprise of both moss and seed plant CNGCs and is therefore inferred to be land plant specific; and cluster IV (magenta) containing only human CNGCs.
图3 植物固有免疫系统应对病原入侵的早期措施描述模式(Ali et al., 2007)(1) 细胞外PAMP或诱导子被植物细胞质膜上假设的受体识别; (2) 病原菌或者PAMP诱导子被受体识别激活CNGC2 (或者通过上调核苷酸三磷酸环化酶增加胞内活性配体的数量, 或者通过其它未知途径); (3) 内在CNGC2流的激活导致胞内暂时的Ca2+浓度增加; (4) Ca2+内流导致胞内Ca2+/CaM含量升高; (5) 胞内Ca2+/CaM含量升高抑制了CNGC2, 进而结束了短暂的胞质Ca2+飙升。
Figure 3 Model illustrating early events of plant innate immunity in response to avirulent pathogens (Ali et al., 2007) (1) The presence of extracellular PAMP/elicitor is recognized by a hypothetic receptor on the plasma membrane; (2) Pathogen or PAMP/elicitor recognition by this receptor activates CNGC2 (either by an increase in cytosolic level of cNMP ligand through the up-regulation of a nucleotide triphosphate cyclase or by an unknown mechanism); (3) Activation of inward CNGC2 current results in a (transient) increase in cytosolic Ca2+; (4) Cytosolic Ca2+/CaM level increases due to influx of Ca2+ into the cell; (5) Elevated level of cytosol Ca2+/CaM inhibits CNGC2, ending the transient cytosolic Ca2+ burst.
图4 35S-AtCNGC2-GFP融合蛋白的亚细胞定位(A, A1, A2) 叶表皮细胞; (B, B1, B2) 气孔保卫细胞; (C, C1, C2) 胚轴细胞; (D, D1, D2) 根细胞。其中图A、B、C和D是激光扫描共聚焦显微镜图片; 图A1、B1、C1和D1分别是对应的明场图片; 图A2、B2、C2和D2分别是对应的叠加图片。Bars=20 μm
Figure 4 Subcellular localization of AtCNGC2-GFP in trans- genic Arabidopsis seedlings (A, A1, A2) Leave pavement cells; (B, B1, B2) Stomatal guard cells; (C, C1, C2) Hypocotyl cells; (D, D1, D2) Root cells. Cells were imaged by laser scanning confocal microscopy (Figures A, B, C, D), differential interference contrast microscopy (Figures A1, B1, C1, D1) and merged images (Figures A2, B2, C2, D2). Bars=20 μm
[1] | 何龙飞, 刘友良, 沈振国, 王爱勤 (1999). 植物离子通道特征、功能、调节与分子生物学. 植物学通报 16, 517-525. |
[2] | 马立农 (2003). 细胞膜离子通道及其检测技术的研究进展. 深圳职业技术学院学报 2(3), 21-26. |
[3] | 蒲力群, 王逢会, 霍满鹏 (2008). 热休克蛋白的研究进展. 延安大学学报(自然科学版) 27, 72-75. |
[4] | 田长恩, 周玉萍 (2013). 植物具IQ基序的钙调素结合蛋白的研究进展. 植物学报 48, 447-460. |
[5] | 王正朝, 黄瑞华, 潘玲梅, 李学斌, 石放雄 (2006). 环核苷酸门控离子通道的结构、功能及活性调节. 中国生物化学与分子生物学报 22, 282-288. |
[6] | 吴巨友, 薛亚男, 张绍铃 (2010). 植物环核苷酸门控离子通道基因的功能及其调控. 西北植物学报 30, 1716-1720. |
[7] | Ahuja I, De Vos RCH, Bones AM, Hall RD (2010). Plant molecular stress responses face climate change.Trends Plant Sci 15, 664-674. |
[8] | Ali R, Ma W, Lemtiri-Chlieh F, Tsaltas D, Leng Q, Von Bodman S, Berkowitz GA (2007). Death don't have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity.Plant Cell 19, 1081-1095. |
[9] | Ali R, Zielinski RE, Berkowitz GA (2006). Expression of plant cyclic nucleotide-gated cation channels in yeast.J Exp Bot 57, 125-138. |
[10] | Arazi T, Kaplan B, Fromm H (2000). A high-affinity cal- modulin-binding site in a tobacco plasma-membrane channel protein coincides with a characteristic element of cyclic nucleotide-binding domains.Plant Mol Biol 42, 591-601. |
[11] | Arazi T, Sunkar R, Kaplan B, Fromm H (1999). A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants.Plant J 20, 171-182. |
[12] | Balagué C, Lin BQ, Alcon C, Flottes G, Malmström S, Köhler C, Neuhaus G, Pelletier G, Gaymard F, Roby D (2003). HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family.Plant Cell 15, 365-379. |
[13] | Bradley J, Reisert J, Frings S (2005). Regulation of cyclic nucleotide-gated channels.Curr Opin Neurobiol 15, 343-349. |
[14] | Chaiwongsar S, Strohm AK, Roe JR, Godiwalla RY, Chan CWM (2009). A cyclic nucleotide-gated channel is necessary for optimum fertility in high-calcium environments. New Phytol 183, 76-87. |
[15] | Chan CWM, Schorrak LM, Smith RK Jr, Bent AF, Sussman MR (2003). A cyclic nucleotide-gated ion channel, CNGC2, is crucial for plant development and adaptation to calcium stress.Plant Physiol 132, 728-731. |
[16] | Chan CWM, Wohlbach DJ, Rodesch MJ, Sussman MR (2008). Transcriptional changes in response to growth of Arabidopsis in high external calcium.FEBS Lett 582, 967-976. |
[17] | Clemens S (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants.Biochimie 88, 1707-1719. |
[18] | Clough SJ, Fengler KA, Yu IC, Lippok B, Smith RK Jr, Bent AF (2000). The Arabidopsis dnd1 ‘‘defense, no death’’ gene encodes a mutated cyclic nucleotide-gated ion channel.Proc Natl Acad Sci USA 97, 9323-9328. |
[19] | Dangl JL, Dietrich RA, Richberg MH (1996). Death don't have no mercy: cell death programs in plant-microbe interactions.Plant Cell 8, 1793-1807. |
[20] | Demidchik V, Davenport RJ, Tester M (2002). Nonselective cation channels in plants.Annu Rev Plant Biol 53, 67-107. |
[21] | Dietrich P, Anschütz U, Kugler A, Becker D (2010). Physiology and biophysics of plant ligand-gated ion channels.Plant Biol 12, 80-93. |
[22] | Epstein E, Bloom AJ (2005). Mineral Nutrition of Plants: Principles and Perspectives, 2nd edn. Sunderland, MA: Sinauer Associates. |
[23] | Fesenko EE, Kolesnikov SS, Lyubarsky AL (1985). Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment.Nature 313, 310-313. |
[24] | Finka A, Cuendet AFH, Maathuis FJM, Saidi Y, Goloubinoff P (2012). Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance.Plant Cell 24, 3333-3348. |
[25] | Flynn GE, Johnson JP, Zagotta WN (2001). Cyclic nucleotide-gated channels: shedding light on the opening of a channel pore.Nat Rev Neurosci 2, 643-651. |
[26] | Frietsch S, Wang YF, Sladek C, Poulsen LR, Romanowsky SM, Schroeder JI, Harper JF (2007). A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen.Proc Natl Acad Sci USA 104, 14531-14536. |
[27] | Genger RK, Jurkowski GI, McDowell JM, Lu H, Jung HW, Greenberg JT, Bent AF (2008). Signaling pathways that regulate the enhanced disease resistance of Arabidopsis “defense, no death” mutants.Mol Plant Microbe Interact 21, 1285-1296. |
[28] | Glazebrook J (2001). Genes controlling expression of defense responses in Arabidopsis—2001 status.Curr Opin Plant Biol 4, 301-308. |
[29] | Gobert A, Park G, Amtmann A, Sanders D, Maathuis FJM (2006). Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport.J Exp Bot 57, 791-800. |
[30] | Guo KM, Babourina O, Christopher DA, Borsics T, Rengel Z (2008). The cyclic nucleotide-gated channel, AtCNGC10, influences salt tolerance in Arabidopsis.Phy- siol Plant 134, 499-507. |
[31] | Heo WD, Lee SH, Kim MC, Kim JC, Chung WS, Chun HJ, Lee KJ, Park CY, Park HC, Choi JY, Cho MJ (1999). Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses.Proc Natl Acad Sci USA 96, 766-771. |
[32] | Hetherington AM, Brownlee C (2004). The generation of Ca2+ signals in plants.Annu Rev Plant Biol 55, 401-427. |
[33] | Horváth I, Glatz A, Varvasovszki V, Török Z, Páli T, Balogh G, Kovács E, Nádasdi L, Benkö S, Joó F, Vígh L (1998). Membrane physical state controls the signaling mechanism of the heat shock response in synechocystis PCC 6803: identification of hsp17 as a “fluidity gene”.Proc Natl Acad Sci USA 95, 3513-3518. |
[34] | Hua BG, Mercier RW, Zielinski RE, Berkowitz GA (2003). Functional interaction of calmodulin with a plant cyclic nucleotide gated cation channel.Plant Physiol Biochem 41, 945-954. |
[35] | Jurkowski GI, Smith RK Jr, Yu IC, Ham JH, Sharma SB, Klessig DF, Fengler KA, Bent AF (2004). Arabidopsis DND2, a second cyclic nucleotide-gated ion channel gene for which mutation causes the “Defense, No Death” phenotype.Mol Plant Microbe Interact 17, 511-520. |
[36] | Kaplan B, Sherman T, Fromm H (2007). Cyclic nucleotide-gated channels in plants.FEBS Lett 581, 2237-2246. |
[37] | Kaupp UB, Seifert R (2002). Cyclic nucleotide-gated ion channels.Physiol Rev 82, 769-824. |
[38] | Köhler C, Merkle T, Neuhaus G (1999). Characterisation of a novel gene family of putative cyclic nucleotide- and calmodulin-regulated ion channels in Arabidopsis tha- liana.Plant J 18, 97-104. |
[39] | Köhler C, Neuhaus G (2000). Characterisation of calmo- dulin binding to cyclic nucleotide-gated ion channels from Arabidopsis thaliana.FEBS Lett 471, 133-136. |
[40] | Kugler A, Köhler B, Palme K, Wolff P, Dietrich P (2009). Salt-dependent regulation of a CNG channel subfamily in Arabidopsis.BMC Plant Biol 9, 140. |
[41] | Lemtiri-Chlieh F, Berkowitz GA (2004). Cyclic adenosine monophosphate regulates calcium channels in the plasma membrane of Arabidopsis leaf guard and mesophyll cells.J Biol Chem 279, 35306-35312. |
[42] | Leng Q, Mercier RW, Hua BG, Fromm H, Berkowitz GA (2002). Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels.Plant Physiol 128, 400-410. |
[43] | Leng Q, Mercier RW, Yao WZ, Berkowitz GA (1999). Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel. Plant Physiol 121, 753-761. |
[44] | Li XL, Borsics T, Harrington HM, Christopher DA (2005). Arabidopsis AtCNGC10 rescues potassium channel mutants of E. coli, yeast and Arabidopsis and is regulated by calcium/calmodulin and cyclic GMP in E. coli.Funct Plant Biol 32, 643-653. |
[45] | Ma W, Berkowitz GA (2011). Ca2+ conduction by plant cyclic nucleotide gated channels and associated signaling com- ponents in pathogen defense signal transduction cascades.New Phytol 190, 566-572. |
[46] | Ma W, Qi Z, Smigel A, Walker RK, Verma R, Berkowitz GA (2009). Ca2+, cAMP, and transduction of non-self perception during plant immune responses.Proc Natl Acad Sci USA 106, 20995-21000. |
[47] | Ma W, Smigel A, Tsai YC, Braam J, Berkowitz GA (2008). Innate immunity signaling: cytosolic Ca2+ elevation is linked to downstream nitric oxide generation through the action of calmodulin or a calmodulin-like protein.Plant Physiol 148, 818-828. |
[48] | Maathuis FJM, Filatov V, Herzyk P, Krijger GC, Axelsen KB, Chen SX, Green BJ, Li Y, Madagan KL, Sán- chez-Fernández R, Forde BG, Palmgren MG, Rea PA, Williams LE, Sanders D, Amtmann A (2003). Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress.Plant J 35, 675-692. |
[49] | Maathuis FJM, Sanders D (2001). Sodium uptake in Ara- bidopsis roots is regulated by cyclic nucleotides.Plant Physiol 127, 1617-1625. |
[50] | Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001). Phylogenetic relationships within cation transporter families of Arabidopsis.Plant Physiol 126, 1646-1667. |
[51] | Meier S, Madeo L, Ederli L, Donaldson L, Pasqualini S, Gehring C (2009). Deciphering cGMP signatures and cGMP-dependent pathways in plant defence.Plant Signal Behav 4, 307-309. |
[52] | Mittler R, Blumwald E (2010). Genetic engineering for modern agriculture: challenges and perspectives.Annu Rev Plant Biol 61, 443-462. |
[53] | Mittler R, Finka A, Goloubinoff P (2012). How do plants feel the heat?Trends Biochem Sci 37, 118-125. |
[54] | Moeder W, Urquhart W, Ung H, Yoshioka K (2011). The role of cyclic nucleotide-gated ion channels in plant immunity.Mol Plant 4, 442-452. |
[55] | Munns R, Tester M (2008). Mechanisms of salinity tolerance.Annu Rev Plant Biol 59, 651-681. |
[56] | Rubio F, Flores P, Navarro JM, Martinez V (2003). Effects of Ca2+, K+ and cGMP on Na+ uptake in pepper plants.Plant Sci 165, 1043-1049. |
[57] | Sangwan V, Örvar BL, Beyerly J, Hirt H, Dhindsa RS (2002). Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways.Plant J 31, 629-638. |
[58] | Schuurink RC, Shartzer SF, Fath A, Jones RL (1998). Characterization of a calmodulin-binding transporter from the plasma membrane of barley aleurone.Proc Natl Acad Sci USA 95, 1944-1949. |
[59] | Sharma SK, De los Rios P, Christen P, Lustig A, Goloubinoff P (2010). The kinetic parameters and energy cost of the Hsp70 chaperone as a polypeptide unfoldase.Nat Chem Biol 6, 914-920. |
[60] | Sunkar R, Kaplan B, Bouché N, Arazi T, Dolev D, Talke IN, Maathuis FJ, Sanders D, Bouchez D, Fromm H (2000). Expression of a truncated tobacco NtCBP4 chan- nel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance.Plant J 24, 533-542. |
[61] | Takabatake R, Karita E, Seo S, Mitsuhara I, Kuchitsu K, Ohashi Y (2007). Pathogen-induced calmodulin isoforms in basal resistance against bacterial and fungal pathogens in tobacco.Plant Cell Physiol 48, 414-423. |
[62] | Talke IN, Blaudez D, Maathuis FJ, Sanders D (2003). CNGCs: prime targets of plant cyclic nucleotide signaling? Trends Plant Sci 8, 286-293. |
[63] | Véry AA, Sentenac H (2002). Cation channels in the Arabidopsis plasma membrane.Trends Plant Sci 7, 168-175. |
[64] | Vierling E (1991). The roles of heat shock proteins in plants.Annu Rev Plant Physiol Plant Mol Biol 42, 579-620. |
[65] | Volkov RA, Panchuk II, Mullineaux PM, Schöffl F (2006). Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis.Plant Mol Biol 61, 733-746. |
[66] | Volotovski ID, Sokolovsky SG, Molchan OV, Knight MR (1998). Second messengers mediate increases in cytosolic calcium in tobacco protoplasts.Plant Physiol 117, 1023-1030. |
[67] | White PJ, Bowen HC, Demidchik V, Nichols C, Davies JM (2002). Genes for calcium-permeable channels in the plasma membrane of plant root cells.Biochim Biophys Acta 1564, 299-309. |
[68] | Williams LE, Mills RF (2005). P1B-ATPases—an ancient family of transition metal pumps with diverse functions in plants.Trends Plant Sci 10, 491-502. |
[69] | Yoshioka K, Kachroo P, Tsui F, Sharma SB, Shah J, Klessig DF (2001). Environmentally sensitive, SA-depen- dent defense responses in the cpr22 mutant of Arabidopsis.Plant J 26, 447-459. |
[70] | Yoshioka K, Moeder W, Kang HG, Kachroo P, Masmoudi K, Berkowitz G, Klessig DF (2006). The chimeric Arabidopsis CYCLIC NUCLEOTIDE-GATED ION CHAN- NEL11/12 activates multiple pathogen resistance res- ponses.Plant Cell 18, 747-763. |
[71] | Yu IC, Parker J, Bent AF (1998). Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant.Proc Natl Acad Sci USA 95, 7819-7824. |
[72] | Yuan QP, Ouyang S, Liu J, Suh B, Cheung F, Sultana R, Lee D, Quackenbush J, Buell CR (2003). The TIGR rice genome annotation resource: annotating the rice genome and creating resources for plant biologists.Nucleic Acids Res 31, 229-233. |
[73] | Zagotta WN, Siegelbaum SA (1996). Structure and function of cyclic nucleotide-gated channels.Annu Rev Neurosci 19, 235-263. |
[74] | Zelman AK, Dawe A, Gehring C, Berkowitz GA (2012). Evolutionary and structural perspectives of plant cyclic nucleotide-gated cation channels.Front Plant Sci 3, 95. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||