Chin Bull Bot ›› 2015, Vol. 50 ›› Issue (1): 32-39.doi: 10.3724/SP.J.1259.2015.00032

• EXPERIMENTAL COMMUNICATIONS • Previous Articles     Next Articles

ygenase that epoxidizes gibberellins in a novel deactivation reaction in rice

Chunfang Zhao, Xintao Qiang, Yadong Zhang, Zhen Zhu, Tao Chen, Qingyong Zhao, Lihui Zhou, Shu Yao, Xin Yu, Cailin Wang*   

  1. Nanjing Branch of Chinese National Center for Rice Improvement, Jiangsu High Quality Rice Research and Development Center, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
  • Received:2014-02-19 Accepted:2014-08-25 Online:2015-04-09 Published:2015-01-01
  • Contact: Wang Cailin E-mail:clwang@jaas.ac.cn
  • About author:

    ? These authors contributed equally to this paper

Abstract:

We analyzed the main agronomy traits and genetic basis of three advanced backcross substitution lines (C031, C108 and C115) derived from an indica recipient, 9311 and a japonica donor, Nipponbare. Compared with 9311, the three substitution lines showed significant differences in panicle neck length and plant height. In addition, C031 and 9311 differed in grain number per panicle and grain weight. Genetic background detection showed that C031 and C115 contain two substituted segments from Nippobare, while C108 contains three segments. Genetic analysis indicated that the ratios of panicle neck length in three F2 segregating populations were all controlled by a single Mendelian factor, and their additive effects were 3.09, 3.05 and -2.04, respectively. Linkage analysis showed that the molecular markers from substituted segments of C031 and C108 were not linked with their segregating populations. Markers on chromosome 12 from substituted segments of C115 linked well with its segregating population, so the gene controlling panicle neck length in C115 is located on chromosome 12 and named qPNL-12. These results provide useful information for mapping and cloning new rice genes controlling panicle neck elongation.

Panicle phenotypes of recipient 9311 and 3 advanced backcross substitution lines Arrows indicate the base of panicle, and short lines indicate the base of flag leaf"

Figure 2

Differences of main agronomic traits between three substitution lines and recipient 9311 * and ** represent the significant differences between the substitution lines and 9311 at 0.05 and 0.01 level, respectively (by LSD-t test)"

Figure 3

Analysis of substituted segments of three substitution lines (A) Distribution of substituted segments on 12 rice chromosomes; Boxes refer to substituted segments of Nipponbare; double lines show the genome of recipient 9311; (B) Location and length of these substituted segments on high-density physical map in rice; The physical location (Mb) and names of molecular markers were indicated in the left and right side of the chromosome, respectively"

Table 1

Segregation ratio of panicle neck length in three F2 populations"

Combination No. of
plants
No. of plants with long
panicle neck
No. of plants with intermediate type No. of plants with short panicle neck Expect ratio χ2
9311/C031
9311/C108
9311/C115
78
80
79
60 18 3:1
1:2:1
3:1
0.15
3.48
0.21
27 37 16
61 18

Figure 4

Distribution of the panicle neck length in three F2 segregating populations between C031 (A), C108 (B), C115 (C) and 9311 Black box represents the individuals used for detecting the target substitution segments controlling the panicle neck length trait"

Table 2

Genetic effect of panicle neck length for three substitution lines"

Substitution
line
Panicle neck length
for higher parent
Panicle neck length for lower parent Panicle neck length for F1 (cm) Mean of the parents
(cm)
Additive effect (a) (cm) Dominant effect (d) (cm) Degree of dominance
(d·a-1)
C031
C108
C115
11.48
11.40
5.30
5.30
5.30
1.22
9.17
7.38
4.50
8.39
8.35
3.26
3.09
3.05
2.04
0.78
-0.97
1.24
0.25
-0.32
0.61
1 官华忠, 段远霖, 刘华清, 陈志伟, 卓敏, 庄丽君, 亓文明, 潘润森, 毛大梅, 周元昌, 王锋, 吴为人 (2011). 水稻包穗突变体esp2的遗传分析与基因精细定位. 科学通报 56, 741-745.
2 何祖华, 申宗坦 (1991). 水稻穗伸出度的遗传和不育系改良. 中国水稻科学 5, 1-6.
3 黄伟素 (2006). 水稻穗颈伸长基因EU12的功能验证. 硕士论文. 杭州: 浙江大学.
4 梁康迳, 王乃元, 杨仁崔 (1992). 水稻穗伸出度的遗传及其在育种上的应用. 福建农学院学报 21, 380-385.
5 刘庄, 罗丽娟 (2006). 水稻矮秆鞘包穗突变体茎的形态解剖学研究. 中国农学通报 22, 409-412.
6 申宗坦, 杨长登, 何祖华 (1987). 消除籼型野败不育系包颈现象的研究. 中国水稻科学 1(2), 95-99.
7 王伟平, 朱飞舟, 唐俐, 陈立云, 武小金 (2008). 一种水稻全包穗突变体的发现及初步分析. 中国农学通报 24, 212-216.
8 杨德卫, 张亚东, 朱镇, 赵凌, 林静, 陈涛, 朱文银, 王才林 (2010). 基于CSSL的水稻抽穗期QTL定位及遗传分析. 植物学报 45, 189-197.
9 杨仁崔 (2005). 水稻eui种质的遗传评价和育种利用. 中国工程科学 7(8), 26-30.
10 赵春芳, 周丽慧, 于新, 赵庆勇, 陈涛, 姚姝, 张亚东, 朱镇, 王才林 (2012). 基于CSSL的高密度物理图谱定位水稻分蘖角度QTL. 植物学报 47, 594-601.
11 朱宏波 (2003). 水稻穗颈伸长基因eui2(t)的精细定位与克隆. 博士论文. 福建: 福建农林大学.
12 朱克明 (2006). 水稻包穗基因SHP6的遗传与定位. 硕士论文. 江苏: 扬州大学.
13 朱文银, 王才林, 杨连群 (2009). 5个籼稻背景的高代回交置换系的置换片段分析. 植物学报 44, 666-672.
14 朱文银, 杨德卫, 林静, 赵凌, 张亚东, 朱镇, 陈涛, 王才林 (2008). 利用染色体片段置换系定位水稻粒型QTL. 江苏农业学报 24, 226-231.
15 Huang J, Tang D, Shen Y, Qin BX, Hong L, You AQ, Li M, Wang X, Yu HX, Gu MH, Cheng ZK (2010). Activation of gibberellin 2-oxidase 6 decreases active gibberellin levels and creates a dominant semi-dwarf phenotype in rice (Oryza sativa L.).J Genet Genomics 37, 23-36.
16 Ji H, Kim H, Yun DW, Yoon UH, Kim TH, Eun MY, Lee GS (2014). Characterization and fine mapping of a shortened uppermost internode mutant in rice.Plant Biotechnol Rep 8, 125-134.
17 Luo A, Qian Q, Yin H, Liu X, Yin C, Lan Y, Tang J, Tang Z, Cao S, Wang X, Xia K, Fu X, Luo D, Chu C (2006). EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice.Plant Cell Physiol 47, 181-191.
18 Rogers SO, Bendich AJ (1988). Extraction of DNA from plant tissues.Plant Mol Biol Manual A6, 1-10.
19 Rutger JN, Carnahan HL (1981). A fourth genetic element to facilitate hybrid cereal production―a recessive tall in rice.Crop Sci 21, 373-376.
20 Tabuchi M, Sugiyama K, Ishiyama K, Inoue E, Sato T, Takahashi H, Yamaya T (2005). Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1.Plant J 42, 641-651.
21 Xu JJ, Zhao Q, Du PN, Xu CW, Wang BH, Feng Q, Liu QQ, Tang SZ, Gu MH, Han B, Liang GH (2010). Developing high throughput genotyped chromosome segment substitu- tion lines based on population whole-genome re-sequencing in rice (Oryza sativa L.).BMC Genomics 11, 656.
22 Yang RC, Zhang SB, Huang RH, Yang SI, Zhang QQ (2002). Breeding technology of eui-hybrids of rice.Agr Sci China 1, 359-363.
23 Young ND, Tanksley SD (1989). Restriction fragment length polymorphism maps and the concept of graphical genotypes.Theor Appl Genet 77, 95-101.
24 Zhu L, Hu J, Zhu KM, Fang YX, Gao ZY, He YH, Zhang GH, Guo LB, Zeng DL, Dong GJ, Yan MX, Liu J, Qian Q (2011). Identification and characterization of SHORTENED UPPERMOST INTERNODE 1, a gene negatively regulating uppermost internode elongation in rice.Plant Mol Biol 77, 475-487.
25 Zhu WY, Lin J, Yang DW, Zhao L, Zhang YD, Zhu Z, Chen T, Wang CL (2009). Development of chromosome segment substitution lines derived from backcross between two sequenced rice cultivars, indica recipient 9311 and japonica Donor Nipponbare.Plant Mol Biol Rep 27, 126-131.
26 Zhu YY, Nomura T, Xu YH, Zhang YY, Peng Y, Mao BZ, Hanada A, Zhou HC, Wang RX, Li PJ, Zhu XD, Mander LN, Kamiya Y, Yamaguchi S, He ZH (2006). ELONGATED UPPERMOST INTERNODE encodes a cytoch- rome P450 monoox
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . Studies on physiology of floral induction and zearalenone[J]. Chin Bull Bot, 1995, 12(专辑3): 18 -29 .
[2] Wu Jian-feng. Lichen Ptant in Langskan Area Nantong[J]. Chin Bull Bot, 1993, 10(01): 62 .
[3] . [J]. Chin Bull Bot, 2000, 17(05): 478 .
[4] WANG Zheng-Feng ZHANG Jun-Li LI Ming-Guang WANG Bo-Sun HE Xing-Jin PENG Shao-Lin. Advances of Plant Molecular Ecology (Ⅰ)—— Genetic Structure and Hybridization[J]. Chin Bull Bot, 2001, 18(06): 635 -642 .
[5] Zhao Yu-hua. Effect of the Plant Cold-resister on Overcoming Rice Seedling Decay in Low Temperature Stress in our County[J]. Chin Bull Bot, 1994, 11(特辑): 97 -99 .
[6] . [J]. Chin Bull Bot, 2015, 50(6): 765 -767 .
[7] Danlong Jing, Jiang Ma, Bo Zhang, Yiyang Han, Zhixiong Liu, Faju Chen. Expression Analysis of MwAG in Different Organs and Developmental Stages of Magnolia wufengensis[J]. Chin Bull Bot, 2013, 48(2): 145 -150 .
[8] Li Xiang-gan. The Population Characteristics and determination of Biomass in the Quercus acutissima Forest Community on Mount Lao[J]. Chin J Plan Ecolo, 1987, 11(1): 21 -31 .
[9] MIAO Bao-He, LI Xiang-Dong, LIU Bo, HE Qi-Ping, ZHU Tao, LIU Xing-Tan, ZHU Qi-Yu, QIAO Guang-Fa, FAN Ting-An, CHEN Cheng-Jun, DONG Qing-Yu, YU Song-Lie. EFFECT OF WAVING-CANOPY CULTURAL TYPE ON ACTIVE OXYGEN AND MEMBRANE LIPID METABOLISM PEROXIDATION OF HIGH OIL SOYBEAN LEAVES[J]. Chin J Plan Ecolo, 2008, 32(3): 673 -680 .
[10] REN Jian-Yi, LIN Yue, YUE Ming. SEED GERMINATION CHARACTERISTICS OF BETULA ALBO-SINENSIS AT MOUNTAIN TAIBAI, CHINA[J]. Chin J Plan Ecolo, 2008, 32(4): 883 -890 .