Chin Bull Bot ›› 2018, Vol. 53 ›› Issue (5): 581-593.doi: 10.11983/CBB17143

• INVITED REVIEW • Previous Articles     Next Articles

Advances in Epigenetic Regulation of Abiotic Stress Response in Plants

Du Kangxi, Shen Wenhui, Dong Aiwu*()   

  1. Institute of Botany, School of Life Sciences, Fudan University, Shanghai 200438, China
  • Received:2017-08-04 Accepted:2017-10-25 Online:2018-11-29 Published:2018-09-01
  • Contact: Dong Aiwu
  • About author:† These authors contributed equally to this paper


Plant growth and development are easily affected by environmental changes, and epigenetic mechanisms play important roles in regulating gene expression in response to environmental stimuli. In recent years, epigenetic stu- dies have achieved important progress in the response to abiotic stresses in plants, providing a good foundation for further understanding the potential molecular mechanisms. In this review, we summarize the plant epigenetic regulations, including DNA methylation, histone modification, chromatin remodeling and small RNA, in response to abiotic stresses.

Key words: epigenetic, abiotic stress, plant, growth and development, research advance

Figure 1

Epigenetic regulation in abiotic stress tolerance in plant"

Table 1

Abiotic stress responsive genes regulated by DNA-methylation in plants"

基因 物种 胁迫类型 参考文献
Asr1, Asr2 番茄(Solanum lycopersicum) 干旱胁迫 González et al., 2011; 2013
NtGPDL 烟草(Nicotiana tabaccum cv. ‘Xanthi nc’) 低温胁迫 Choi and Sano, 2007
OsMYB91 水稻(Oryza sativa) 盐胁迫 Zhu et al., 2015
Glyma16g27950 Glyma20g30840
大豆(Glycine max) 盐胁迫 Song et al., 2012
SPCH, FAMA 拟南芥(Arabidopsis thaliana) 湿度胁迫 Tricker et al., 2012
ZmMI1, Ac/Ds 玉米(Zea mays) 低温胁迫 Steward et al., 2002
Tam3 金鱼草(Antirrhinum majus) 低温胁迫 Hashida et al., 2006
NRPD2 拟南芥(A. thaliana) 高温胁迫 Popova et al., 2013

Table 2

Histone modification related genes involved in abiotic stresses in plants"

基因 物种 胁迫类型 参考文献
HDACs 拟南芥(Arabidopsis thaliana ) 盐胁迫 Luo et al., 2012
SKB1 拟南芥(A. thaliana ) 盐胁迫 Zhang et al., 2011b
MSI1, HDA19 拟南芥(A. thaliana ) 盐胁迫 Mehdi et al., 2016
HDA9 拟南芥(A. thaliana ) 盐胁迫, 干旱胁迫 Zheng et al., 2016
HDA705 水稻(Oryza sativa) 盐胁迫 Zhao et al., 2016
GCN5 拟南芥(A. thaliana ) 热胁迫 Hu et al., 2015
HDT701 水稻(O. sativa) 盐胁迫 Zhao et al., 2014
AtABO1 拟南芥(A. thaliana ) 干旱胁迫 Chen et al., 2006
ADH1, PDC1 水稻(O. sativa) 淹水胁迫 Tsuji et al., 2006
OsHAG702, OsHAG704 OsHAC701, OsHAC704 水稻(O. sativa) 干旱胁迫 Liu et al., 2012
OsHAG703, OsHAM701 OsHAC703, OsHAF701 水稻(O. sativa) 干旱胁迫 Liu et al., 2012; Fang et al., 2014
AtATX1 拟南芥(A. thaliana ) 干旱胁迫 Ding et al., 2011
OsDREB1bc 水稻(O. sativa) 盐胁迫, 低温胁迫 Roy et al., 2014
HvTX1, HvPKDM7 大麦(Hordeum vulgare) 干旱胁迫 Papaefthimiou and Tsaftaris, 2012
MYST, ELP3, GCN5 大麦(H. vulgare) 干旱胁迫 Papaefthimiou et al., 2010
AtHD2C 拟南芥(A. thaliana ) 干旱胁迫 Sridha and Wu, 2006
AtMSI1, AtCHR12 拟南芥(A. thaliana ) 干旱胁迫, 高温胁迫 Alexandre et al., 2009
AtBRM 拟南芥(A. thaliana ) 干旱胁迫 Berr et al., 2012

Table 3

sRNA and sRNA-regulated genes involved in abiotic stresses in plants"

基因 物种 胁迫类型 参考文献
SlAGO4A 番茄(Solanum lycopersicum) 干旱胁迫, 盐胁迫 Huang et al., 2016
19 different miRNAs 水稻(Oryza sativa) 干旱胁迫 Zhou et al., 2010
13 different miRNAs 野生二粒小麦(Triticum turgidum ssp. dicoccoides) 干旱胁迫 Kantar et al., 2011
CSD1, CSD2, CCS 拟南芥(Arabidopsis thaliana ) 高温胁迫 Guan et al., 2013
NFYA5 拟南芥(A. thaliana ) 干旱胁迫 Li et al., 2008
OsPCF5, OsPCF8 水稻(O. sativa) 低温胁迫 Yang et al., 2013
GmNFYA3 大豆(Glycine max ) 干旱胁迫 Ni et al., 2013
Phvul.010g120700 菜豆(Phaseolus vulgaris) 干旱胁迫 Sosa-Valencia et al., 2017
SlNF-YA1/2/3, SlMRP1 番茄(S. lycopersicum) 干旱胁迫 Zhang et al., 2011a
BHLH23 鹰嘴豆(Cicer arietinum) 干旱胁迫 Hajyzadeh et al., 2015

Table 4

Chromatin remodeling related genes involved in abiotic stresses in plants"

基因 物种 胁迫类型 参考文献
AtCHR12 拟南芥(Arabidopsis thaliana ) 干旱, 高温胁迫 Mlynárová et al., 2007
BRM 拟南芥(A. thaliana ) ABA, 干旱胁迫 Han et al., 2012
AtCHR23 拟南芥(A. thaliana ) 盐胁迫 Folta et al., 2014
ATL1 水稻(Oryza sativa) 碱胁迫 Guo et al., 2014
AtASF1A/B 拟南芥(A. thaliana ) 热胁迫 Weng et al., 2014
AtNAP1 拟南芥(A. thaliana ) 盐胁迫 Liu et al., 2009
1 Alexandre C, Möller-Steinbach Y, Schönrock N, Gruissem W, Hennig L (2009). Arabidopsis MSI1 is required for negative regulation of the response to drought stress.Mol Plant 2, 675-687.
2 Alinsug MV, Yu CW, Wu KQ (2009). Phylogenetic analysis, subcellular localization, and expression patterns of RPD3/ HDA1 family histone deacetylases in plants.BMC Plant Biol 9, 37.
3 Al-Lawati A, Al-Bahry S, Victor R, AL-Lawati AH, Yaish MW (2016). Salt stress alters DNA methylation levels in alfalfa (Medicago spp.). Genet Mol Res 15, 15018299.
4 Aufsatz W, Mette MF, Van Der Winden J, Matzke M, Matzke AJM (2002). HDA6, a putative histone deacety- lase needed to enhance DNA methylation induced by dou- ble-stranded RNA.EMBO J 21, 6832-6841.
5 Avramova Z (2015). Transcriptional ‘memory’ of a stress: transient chromatin and memory (epigenetic) marks at st- ress-response genes.Plant J 83, 149-159.
6 Berr A, Ménard R, Heitz T, Shen WH (2012). Chromatin modification and remodelling: a regulatory landscape for the control of Arabidopsis defence responses upon patho- gen attack.Cell Microbiol 14, 829-839.
7 Berr A, Xu L, Gao J, Cognat V, Steinmetz A, Dong AW, Shen WH (2009). SET DOMAIN GROUP25 encodes a histone methyltransferase and is involved in FLOWERING LOCUS C activation and repression of flowering. Plant Phy- siol 151, 1476-1485.
8 Bertrand C, Bergounioux C, Domenichini S, Delarue M, Zhou DX (2003). Arabidopsis histone acetyltransferase AtGCN5 regulates the floral meristem activity through the WUSCHEL/AGAMOUS pathway. J Biol Chem 278, 28246-28251.
9 Bharti P, Mahajan M, Vishwakarma AK, Bhardwaj J, Yadav SK (2015). AtROS1 overexpression provides evidence for epigenetic regulation of genes encoding enzymes of flavonoid biosynthesis and antioxidant pathways during salt stress in transgenic tobacco. J Exp Bot 66, 5959-5969.
10 Bostock RM (2005). Signal crosstalk and induced resistance: straddling the line between cost and benefit.Annu Rev Phytopathol 43, 545-580.
11 Boyko A, Blevins T, Yao Y, Golubov A, Bilichak A, Ilnytskyy Y, Hollunder J, Meins Jr F, Kovalchuk I (2010). Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of dicer-like proteins.PLoS One 5, e9514.
12 Boyko A, Kovalchuk I (2008). Epigenetic control of plant stress response.Environ Mol Mutagen 49, 61-72.
13 Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon YH, Sung ZR, Goodrich J (2004). Interaction of polycomb-group proteins controlling flowering in Arabidopsis.Development 131, 5263-5276.
14 Chen FF, He GM, He H, Chen W, Zhu XP, Liang MZ, Chen LB, Deng XW (2010). Expression analysis of miRNAs and highly-expressed small RNAs in two rice subspecies and their reciprocal hybrids.J Integr Plant Biol 52, 971-980.
15 Chen LT, Wu KQ (2010). Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response.Plant Sig- nal Behav 5, 1318-1320.
16 Chen ZZ, Zhang HR, Jablonowski D, Zhou XF, Ren XZ, Hong XH, Schaffrath R, Zhu JK, Gong ZZ (2006). Mutations in ABO1/ELO2, a subunit of holo-Elongator, increase abscisic acid sensitivity and drought tolerance in Arabidopsis thaliana. Mol Cell Biol 26, 6902-6912.
17 Choi CS, Sano H (2007). Abiotic-stress induces demethyla- tion and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants.Mol Genet Genomics 277, 589-600.
18 Crisp PA, Ganguly D, Eichten SR, Borevita JO, Pogson BJ (2016). Reconsidering plant memory: intersections between stress recovery, RNA turnover, and epigenetics.Sci Adv 2, e1501340
19 Dhar MK, Vishal P, Sharma R, Kaul S (2014). Epigenetic dynamics: role of epimarks and underlying machinery in plants exposed to abiotic stress.Int J Genomics 2014, 187146.
20 Ding Y, Avramova Z, Fromm M (2011). The Arabidopsis trithorax-like factor ATX1 functions in dehydration stress responses via ABA-dependent and ABA-independent pathways.Plant J 66, 735-744.
21 Eichten SR, Schmitz RJ, Springer NM (2014). Epigenetics: beyond chromatin modifications and complex genetic re- gulation.Plant Physiol 165, 933-947.
22 Fang H, Liu X, Thorn G, Duan J, Tian LN (2014). Expression analysis of histone acetyltransferases in rice under drought stress.Biochem Biophys Res Commun 443, 400-405.
23 Feng QZ, Yang CW, Lin XY, Wang JM, Ou XF, Zhang CY, Liu B (2012). Salt and alkaline stress induced transgene- rational alteration in DNA methylation of rice (Oryza sativa). Aust J Crop Sci 6, 877.
24 Ferreira LJ, Azevedo V, Maroco J, Oliveira MM, Santos AP (2015). Salt tolerant and sensitive rice varieties display differential methylome flexibility under salt stress.PLoS One 10, e0124060.
25 Folta A, Severing EI, Krauskopf J, Van De Geest H, Verver J, Nap JP, Mlynarova L (2014). Over-expression of Arabidopsis AtCHR23 chromatin remodeling ATPase results in increased variability of growth and gene expression. BMC Plant Biol 14, 76.
26 Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi SK, Shinozaki K (2006). Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks.Curr Opin Plant Biol 9, 436-442.
27 Geiman TM, Robertson KD (2002). Chromatin remodeling, histone modifications, and DNA methylation—how does it all fit together?J Cell Biochem 87, 117-125.
28 Gong ZZ, Morales-Ruiz T, Ariza RR, Roldán-Arjona T, David L, Zhu JK (2002). ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 11, 803-814.
29 González RM, Ricardi MM, Iusem ND (2011). Atypical epigenetic mark in an atypical location: cytosine methylation at asymmetric (CNN) sites within the body of a non-repeti- tive tomato gene.BMC Plant Biol 11, 94.
30 González RM, Ricardi MM, Iusem ND (2013). Epigenetic marks in an adaptive water stress-responsive gene in tomato roots under normal and drought conditions.Epigenetics 8, 864-872.
31 Guan QM, Lu XY, Zeng HT, Zhang YY, Zhu JH (2013). Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J 74, 840-851.
32 Guo MX, Wang RC, Wang J, Hua K, Wang YM, Liu XQ, Yao SG (2014). ALT1, a Snf2 family chromatin remodeling ATPase, negatively regulates alkaline tolerance through enhanced defense against oxidative stress in rice.PLoS One 9, e112515.
33 Hajyzadeh M, Turktas M, Khawar KM, Unver T (2015). miR408 overexpression causes increased drought tolerance in chickpea.Gene 555, 186-193.
34 Han SK, Sang Y, Rodrigues A, Wu MF, Rodriguez PL, Wagner D (2012). The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis.Plant Cell 24, 4892-4906.
35 Hashida SN, Uchiyama T, Martin C, Kishima Y, Sano Y, Mikami T (2006). The temperature-dependent change in methylation of the Antirrhinum transposon Tam3 is controlled by the activity of its transposase. Plant Cell 18, 104-118.
36 He GM, Zhu XP, Elling AA, Chen LB, Wang XF, Guo L, Liang MZ, He H, Zhang HY, Chen FF, Qi YJ, Chen RS, Deng XW (2010). Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids.Plant Cell 22, 17-33.
37 Hu ZR, Song N, Zheng M, Liu XY, Liu ZS, Xing JW, Ma JH, Guo WW, Yao YY, Peng HR, Xin MM, Zhou DX, Ni ZF, Sun QX (2015). Histone acetyltransferase GCN5 is essential for heat stress-responsive gene activation and thermotolerance in Arabidopsis.Plant J 84, 1178-1191.
38 Huang W, Xian ZQ, Hu GJ, Zheng GL (2016). SlAGO4A, a core factor of RNA-directed DNA methylation (RdDM) pathway, plays an important role under salt and drought stress in tomato.Mol Breed 36, 28.
39 James A, Wang YB, Raje H, Rosby R, DiMario P (2014). Nucleolar stress with and without p53.Nucleus 5, 402-426.
40 Johnson TB, Coghill RD (1925). Researches on pyrimidines. C111. The discovery of 5-methyl-cytosine in tuberculinic acid, the nucleic acid of the tubercle bacillus.J Am Chem Soc 11, 2838-2844.
41 Kankel MW, Ramsey DE, Stokes TL, Flowers SK, Haag JR, Jeddeloh JA, Riddle NC, Verbsky ML, Richards E (2003). Arabidopsis MET1 cytosine methyltransferase mu- tants.Genetics 163, 1109-1122.
42 Kantar M, Lucas SJ, Budak H (2011). miRNA expression patterns ofTriticum dicoccoides in response to shock dr- ought stress. Planta 233, 471-484.
43 Karan R, DeLeon T, Biradar H, Subudhi PK (2012). Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genoty- pes.PLoS One 7, e40203.
44 Karlsson M, Weber W, Fussenegger M (2011). De novo design and construction of an inducible gene expres- sion system in mammalian cells. Meth Enzymol 497, 239-253.
45 Kim JM, To TK, Ishida J, Matsui A, Kimura H, Seki M (2012). Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana. Plant Cell Physiol 53, 847-856.
46 Kim KC, Lai ZB, Fan BF, Chen ZX (2008). Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense.Plant Cell 20, 2357-2371.
47 Kinoshita T, Miura A, Choi Y, Yuki K, Cao XF, Jacobsen SE, Fischer RL, Kakutani T (2004). One-way control of FWA imprinting in Arabidopsis endosperm by DNA met- hylation. Science 303, 521-523.
48 Kinoshita T, Seki M (2014). Epigenetic memory for stress response and adaptation in plant.Plant Cell Physiol 55, 1859-1863.
49 Li CL, Gu LF, Gao L, Chen C, Wei CQ, Qiu Q, Chien CW, Wang SK, Jiang LH, Ai LF, Chen CY, Yang SG, Nguyen V, Qi YH, Snyder MP, Burlingame A, Kohalmi SE, Huang SZ, Cao XF, Wang ZY, Wu KQ, Chen XM, Cui YH (2016). Concerted genomic targeting of H3K27 demethylase REF6 and chromatin-remodeling ATPase BRM in Arabidopsis.Nat Genet 48, 687-693.
50 Li WX, Oono Y, Zhu JH, He XJ, Wu JM, Iida K, Lu XY, Cui XP, Jin HL, Zhu JK (2008). The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance.Plant Cell 20, 2238-2251.
51 Lindroth AM, Cao XF, Jackson JP, Zilberman D, Mc- Callum CM, Henikoff S, Jacobsen SE (2001). Requirement of CHROMOMETHYLASE3 for maintenance of Cp- XpG methylation. Science 292, 2077-2080.
52 Liu CY, Lu FL, Cui X, Cao XF (2010). Histone methylation in higher plants.Annu Rev Plant Biol 61, 395-420.
53 Liu X, Luo M, Zhang W, Zhao JH, Zhang JX, Wu KQ, Tian LN, Duan J (2012). Histone acetyltransferases in rice (Oryza sativa L.): phylogenetic analysis, subcellular loca- lization and expression. BMC Plant Biol 12, 145.
54 Liu ZQ, Gao J, Dong AW, Shen WH (2009). A truncated Arabidopsis NUCLEOSOME ASSEMBLY PROTEIN 1, At- NAP1;3T, alters plant growth responses to abscisic acid and salt in the Atnap1;3-2 mutant. Mol Plant 2, 688-699.
55 Long JA, Ohno C, Smith ZR, Meyerowitz EM (2006). TOP- LESS regulates apical embryonic fate in Arabidopsis.Sci- ence 312, 1520-1523.
56 Lorenzo O, Solano R (2005). Molecular players regulating the jasmonate signaling network.Curr Opin Plant Biol 8, 532-540.
57 Lu XK, Shu N, Wang JJ, Chen XG, Wang DL, Wang S, Fan WL, Guo XN, Guo LX, Ye WW (2017). Genome-wide analysis of salinity-stress induced DNA methylation alterations in cotton (Gossypium hirsutum L.) using the Me-DIP sequencing technology. Genet Mol Res 16, 1-16.
58 Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997). Crystal structure of the nucleosome core particle at 2.8 Å resolution.Nature 389, 251-260.
59 Luo M, Wang YY, Liu XC, Yang SG, Lu Q, Cui YH, Wu KQ (2012). HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis.J Exp Bot 63, 3297-3306.
60 Madlung A, Comai L (2004). The effect of stress on genome regulation and structure.Ann Bot 94, 481-495.
61 Mallory AC, Vaucheret H (2006). Function of microRNAs and related small RNAs in plants.Nat Genet 38, 31-36.
62 Mauch-Mani B, Mauch F (2005). The role of abscisic acid in plant-pathogen interactions.Curr Opin Plant Biol 8, 409-414.
63 Mehdi S, Derkacheva M, Ramström M, Kralemann L, Bergquist J, Hennig L (2016). The WD40 domain protein MSI1 functions in a histone deacetylase complex to fine- tune abscisic acid signaling.Plant Cell 28, 42-54.
64 Miller MJ, Barrett-Wilt GA, Hua ZZ, Vierstra RD (2010). Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis.Proc Natl Acad Sci USA 107, 16512-16517.
65 Mlynárová L, Nap JP, Bisseling T (2007). The SWI/SNF chromatin-remodeling geneAtCHR12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental stress. Plant J 51, 874-885.
66 Murfett J, Wang XJ, Hagen G, Guilfoyle TJ (2001). Identification of Arabidopsis histone deacetylase HDA6 mutants that affect transgene expression.Plant Cell 13, 1047-1061.
67 Naydenov M, Baev V, Apostolova E, Gospodinova N, Sablok G, Gozmanova M, Yahubyan G (2015). High- temperature effect on genes engaged in DNA methylation and affected by DNA methylation in Arabidopsis.Plant Physiol Biochem 87, 102-108.
68 Ni ZY, Hu Z, Jiang QY, Zhang H (2013). GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. Plant Mol Biol 82, 113-129.
69 Pandey R, Müller A, Napoli CA, Selinger DA, Pikaard CS, Richards EJ, Bender J, Mount DW, Jorgensen RA (2002). Analysis of histone acetyltransferase and histone deacetylase families ofArabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res 30, 5036-5055.
70 Papaefthimiou D, Likotrafiti E, Kapazoglou A, Bladenopoulos K, Tsaftaris A (2010). Epigenetic chromatin modifiers in barley: III. Isolation and characterization of the barley GNAT-MYST family of histone acetyltransferases and responses to exogenous ABA.Plant Physiol Biochem 48, 98-107.
71 Papaefthimiou D, Tsaftaris AS (2012). Significant induction by drought of HvPKDM7-1, a gene encoding a jumonji-like histone demethylase homologue in barley(H. vulgare). Ac- ta Physiol Plant 34, 1187-1198.
72 Pavangadkar K, Thomashow MF, Triezenberg SJ (2010). Histone dynamics and roles of histone acetyltransferases during cold-induced gene regulation in Arabidopsis.Plant Mol Biol 74, 183-200.
73 Peirats-Llobet M, Han SK, Gonzalez-Guzman M, Jeong CW, Rodriguez L, Belda-Palazon B, Wagner D, Rodriguez PL (2015). A direct link between abscisic acid sensing and the chromatin-remodeling ATPase BRAHMA via core ABA signaling pathway components.Mol Plant 9, 136-147.
74 Perruc E, Kinoshita N, Lopez-Molina L (2007). The role of chromatin-remodeling factor PKL in balancing osmotic stress responses during Arabidopsis seed germination.Plant J 52, 927-936.
75 Phillips JR, Dalmay T, Bartels D (2007). The role of small RNAs in abiotic stress.FEBS Lett 581, 3592-3597.
76 Pontvianne F, Blevins T, Pikaard CS (2010). Arabidopsis histone lysine methyltransferases.Adv Bot Res 53, 1-22.
77 Popova OV, Dinh HQ, Aufsatz W, Jonak C (2013). The RdDM pathway is required for basal heat tolerance in Arabidopsis.Mol Plant 6, 396-410.
78 Probst AV, Fagard M, Proux F, Mourrain P, Boutet S, Earley K, Lawrence RJ, Pikaard CS, Murfett J, Furner L, Vaucheret H, Scheid OM (2004). Arabidopsis histone deacetylase HDA6 is required for maintenance of trans- criptional gene silencing and determines nuclear organization of rDNA repeats.Plant Cell 16, 1021-1034.
79 Qiao WH, Fan LM (2011). Epigenetics, a mode for plants to respond to abiotic stresses.Front Biol 6, 477-481.
80 Racki LR, Narlikar GJ (2008). ATP-dependent chromatin remodeling enzymes: two heads are not better, just different.Curr Opin Genet Dev 18, 137-144.
81 Ramachandran V, Chen XM (2008). Small RNA metabolism in Arabidopsis.Trends Plant Sci 13, 368-374.
82 Roy D, Paul A, Roy A, Ghosh R, Ganguly P, Chaudhuri S (2014). Differential acetylation of histone H3 at the regulatory region of OsDREB1b promoter facilitates chromatin remodelling and transcription activation during cold stress. PLoS One 9, e100343.
83 Russo VEA, Martienssen RA, Riggs AD (1996). Epigenetic Mechanisms of Gene Regulation. Plainview, NY: Cold Sp- ring Harbor Laboratory Press.
84 Saez A, Rodrigues A, Santiago J, Rubio S, Rodriguez PL (2008). HAB1-SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin-remodeling complexes in Arabidopsis.Plant Cell 20, 2972-2988.
85 Sahu PP, Pandey G, Sharma N, Puranik S, Muthamilarasan M, Prasad M (2013). Epigenetic mechanisms of plant stress responses and adaptation.Plant Cell Rep 32, 1151-1159.
86 Saze H, Shiraishi A, Miura A, Kakutani T (2008). Control of genic DNA methylation by a jmjC domain-containing protein in Arabidopsis thaliana. Science 319, 462-465.
87 Song YG, Ji DD, Li S, Wang P, Li Q, Xiang FN (2012). The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean.PLoS One 7, e41274.
88 Sosa-Valencia G, Palomar M, Covarrubias AA, Reyes J (2017). The legume miR1514a modulates a NAC trans- cription factor transcript to trigger phasiRNA formation in response to drought.J Exp Bot 68, 2013-2026.
89 Sridha S, Wu KQ (2006). Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J 46, 124-133.
90 Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H (2002). Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress.J Biol Chem 277, 37741-37746.
91 Strahl BD, Allis CD (2000). The language of covalent histone modifications.Nature 403, 41-45.
92 Sudarsanam P, Winston F (2000). The Swi/Snf family: nucleosome-remodeling complexes and transcriptional control.Trends Genet 16, 345-351.
93 Sunkar R, Chinnusamy V, Zhu JH, Zhu JK (2007). Small RNAs as big players in plant abiotic stress responses and nutrient deprivation.Trends Plant Sci 12, 301-309.
94 Torres MA, Dangl JL (2005). Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development.Curr Opin Plant Biol 8, 397-403.
95 Tricker PJ, Gibbings JG, López CMR, Hadley P, Wilkinson MJ (2012). Low relative humidity triggers RNA-di- rected de novo DNA methylation and suppression of genes controlling stomatal development. J Exp Bot 63, 3799-3813.
96 Tsuji H, Saika H, Tsutsumi N, Hirai A, Nakazono M (2006). Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence- inducible genes in rice.Plant Cell Physiol 47, 995-1003.
97 Vanyushin BF, Belozerskii AN (1959). Nucleotide composition of deoxyribonucleic acid in higher plants.Dokl Akad Nauk SSSR 129, 944-946.
98 Vriet C, Hennig L, Laloi C (2015). Stress-induced chromatin changes in plants: of memories, metabolites and crop improvement.Cell Mol Life Sci 72, 1261-1273.
99 Wang M, Qin LM, Xie C, Li W, Yuan JR, Kong LN, Yu WL, Xia GM, Liu SW (2014). Induced and constitutive DNA methylation in a salinity-tolerant wheat introgression line.Plant Cell Physiol 55, 1354-1365.
100 Wang P, Zhao L, Hou HL, Zhang H, Huang Y, Wang YP, Li H, Gao F, Yan SH, Li LJ (2015). Epigenetic changes are associated with programmed cell death induced by heat stress in seedling leaves of Zea mays. Plant Cell Physiol 56, 965-976.
101 Wang WS, Pan YJ, Zhao XQ, Dwivedi D, Zhu LH, Ali J, Fu BY, Li ZK (2011). Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J Exp Bot 62, 1951-1960.
102 Wang WS, Zhao XQ, Pan YJ, Zhu LH, Fu BY, Li ZK (2011). DNA methylation changes detected by methylation-sen- sitive amplified polymorphism in two contrasting rice geno- types under salt stress.J Genet Genomics 38, 419-424.
103 Weng MJ, Yang Y, Feng HY, Pan ZD, Shen WH, Zhu Y, Dong AW (2014). Histone chaperone ASF1 is involved in gene transcription activation in response to heat stress in Arabidopsis thaliana. Plant Cell Environ 37, 2128-2138.
104 Wu CT, Morris JR (2001). Genes, genetics, and epigenetics: a correspondence.Science 293, 1103-1105.
105 Xu L, Zhao Z, Dong AW, Soubigou-Taconnat L, Renou JP, Steinmetz A, Shen WH (2008). Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana. Mol Cell Biol 28, 1348-1360.
106 Yang CH, Li DY, Mao DH, Liu X, Ji CJ, Li XB, Zhao XF, Cheng ZK, Chen CY, Zhu LH (2013). Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice ( Oryza sativa L.). Plant Cell Environ 36, 2207-2218.
107 Yuan LY, Liu XC, Luo M, Yang SG, Wu KQ (2013). Involvement of histone modifications in plant abiotic stress responses.J Integr Plant Biol 55, 892-901.
108 Zhang JJ, Lai JB, Wang FG, Yang SG, He ZP, Jiang JM, Li QL, Wu Q, Liu YY, Yu MY, Du JJ, Xie Q, Wu KQ, Yang CW (2017). A SUMO ligase AtMMS21 regulates the stability of the chromatin remodeler BRAHMA in root deve- lopment.Plant Physiol 173, 1574-1582.
109 Zhang L, Peng YG, Wei XL, Dai Y, Yuan DW, Lu YF, Pan YY, Zhu Z (2014). Small RNAs as important regulators for the hybrid vigour of super-hybrid rice.J Exp Bot 65, 5989-6002.
110 Zhang XH, Zou Z, Gong PJ, Zhang JH, Ziaf K, Li HX, Xiao FM, Ye ZB (2011a). Over-expression of microRNA169 confers enhanced drought tolerance to tomato.Biotechnol Lett 33, 403-409.
111 Zhang ZL, Zhang SP, Zhang Y, Wang X, Li D, Li QL, Yue MH, Li Q, Zhang YE, Xu YY, Xue YB, Chong K, Bao SL (2011b). Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and Pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation.Plant Cell 23, 396-411.
112 Zhao JH, Li MZ, Gu DC, Liu XC, Zhang JX, Wu KL, Zhang XH, Da Silva JAT, Duan J (2016). Involvement of rice histone deacetylase HDA705 in seed germination and in response to ABA and abiotic stresses.Biochem Biophys Res Commun 470, 439-444.
113 Zhao JH, Zhang JX, Zhang W, Wu KL, Zheng F, Tian LN, Liu XC, Duan J (2014). Expression and functional analysis of the plant-specific histone deacetylase HDT701 in rice. Front Plant Sci 5, 764.
114 Zheng Y, Ding Y, Sun X, Xie SS, Wang D, Liu XY, Su LF, Wei W, Pan L, Zhou DX (2016). Histone deacetylase HDA9 negatively regulates salt and drought stress respon- siveness in Arabidopsis.J Exp Bot 67, 1703-1713.
115 Zhou LG, Liu YH, Liu ZC, Kong DY, Duan M, Luo LJ (2010). Genome-wide identification and analysis of drought- responsive microRNAs in Oryza sativa. J Exp Bot 61, 4157-4168.
116 Zhu N, Cheng SF, Liu XY, Du H, Dai MQ, Zhou DX, Yang WJ, Zhao Y (2015). The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice. Plant Sci 236, 146-156.
[1] Ying Chen. Techniques and methods for field warming manipulation experiments in terrestrial ecosystems [J]. Chin J Plant Ecol, 2020, 44(生态技术与方法专辑): 0-0.
[2] . Stepping out of the Shadow of Goethe: for a More Scientific Plant Systematics [J]. Chin Bull Bot, 2020, 55(4): 0-0.
[3] . NLR and Its Regulation on Plant Disease Resistance [J]. Chin Bull Bot, 2020, 55(4): 0-0.
[4] Lei -Yang. Advances in AP2/ERF transcription factors regulating plant abiotic stress response [J]. Chin Bull Bot, 2020, 55(4): 0-0.
[5] Dongdong Chen,Zhenqing Li. Population viability analysis of Wild Plant with Extremely Small Populations (WPESP): Methods, problems and prospects [J]. Biodiv Sci, 2020, 28(3): 358-366.
[6] . Subcellular Trafficking in Pattern Recognition Receptor-Triggered Plant Immunity [J]. Chin Bull Bot, 2020, 55(3): 0-0.
[7] zuo jianru Xiao-Quan QI Wang LeiLei chong chongkang 王台. Achievements and Advance in Chinese Plant Sciences in 2019 [J]. Chin Bull Bot, 2020, 55(3): 0-0.
[8] Jinyuan Su,Yu Yan,Chong Li,Dan Li,Fang K. Du. Informing conservation strategies with genetic diversity in Wild Plant with Extremely Small Populations: A review on gymnosperms [J]. Biodiv Sci, 2020, 28(3): 376-384.
[9] Sha Deng,Yanni Wu,Kunlin Wu,Lin Fang,Lin Li,Songjun Zeng. Breeding characteristics and artificial propagation of 14 species of Wild Plant with Extremely Small Populations (WPESP) in China [J]. Biodiv Sci, 2020, 28(3): 385-400.
[10] Yaobin Song,Li Xu,Junpeng Duan,Weijun Zhang,Xiaolu Shentu,Tianxiang Li,Runguo Zang,Ming Dong. Sex ratio and spatial pattern of Taxus fuana, a Wild Plant with Extremely Small Populations in Tibet [J]. Biodiv Sci, 2020, 28(3): 269-276.
[11] Zhixia Zhao,Changming Zhao,Shuyu Deng,Guozhen Shen,Zongqiang Xie,Gaoming Xiong,Junqing Li. Community structure and dynamics of a remnant forest dominated by Thuja sutchuenensis after deforestation [J]. Biodiv Sci, 2020, 28(3): 333-339.
[12] Shitong Wang,Yaozhan Xu,Teng Yang,Xinzeng Wei,Mingxi Jiang. Impacts of microhabitats on leaf functional traits of the wild population of Sinojackia huangmeiensis [J]. Biodiv Sci, 2020, 28(3): 277-288.
[13] Xinghui Lu,Runguo Zang,Yi Ding,Jihong Huang,Yue Xu. Habitat characteristics and its effects on seedling abundance of Hopea hainanensis, a Wild Plant with Extremely Small Populations [J]. Biodiv Sci, 2020, 28(3): 289-295.
[14] Xiulian Chi, Ting Guo, Qinggang Wang, Zhixian Jing, Xiaobo Zhang, Xiaolin Li, Kai Sun, Tielin Wang, Guang Yang. Evaluation of in situ conservation effectiveness on medicinal vascular plants in national nature reserves in central China [J]. Biodiv Sci, 2020, 28(2): 135-143.
[15] Jing-Yun FANG Ke GUO Guo-Hong WANG Zhi-Yao TANG Zong-Qiang XIE Ze-Hao SHEN Ren-Qing WANG Cun-Zhu LIANG. Vegetation classification system and classification of vegetation types used for the compilation of Vegetation of China [J]. Chin J Plant Ecol, 2020, 44(2): 0-0.
Full text



[1] LIU Jun;ZHAO Lan-Yong;FENG Zhen;ZHANG Mei-Rong;WU Yin-Feng. Optimization Selection of Genetic Transformation Regeneration System from Leaves of Dendranthema morifolium[J]. Chin Bull Bot, 2004, 21(05): 556 -558 .
[2] Luo Jian-ping and Ja Jing-fen. Structure and Function of Plant Oligosaceaharins[J]. Chin Bull Bot, 1996, 13(04): 28 -33 .
[3] YANG Qi-He SONG Song-Quan YE Wan-HuiYIN Shou-HuaT. Mechanism of Seed Photosensitivity and FactorsInfluencing Seed Photosensitivity[J]. Chin Bull Bot, 2003, 20(02): 238 -247 .
[4] CUI Yue-Hua;WANG Mao and SUN Ke-Lian. Morphological Study of Gutta-containing Cells in Eucommia ulmoides Oliv.[J]. Chin Bull Bot, 1999, 16(04): 439 -443 .
[5] CHEN Shao-Liang LI Jin-Ke BI Wang-Fu WANG Sha-Sheng. Genotypic Variation in Accumulation of Salt Ions, Betaine and Sugars in Poplar Under Conditions of Salt Stress[J]. Chin Bull Bot, 2001, 18(05): 587 -596 .
[6] . Advances in Research into Low-Phytic-Acid Mutants in Crops[J]. Chin Bull Bot, 2005, 22(04): 463 -470 .
[7] Cong Ma, Weiwen Kong. Research Progress in Plant Metacaspase[J]. Chin Bull Bot, 2012, 47(5): 543 -549 .
[8] Chang’en Tian, Yuping Zhou. Research Progress in Plant IQ Motif-containing Calmodulin-binding Proteins[J]. Chin Bull Bot, 2013, 48(4): 447 -460 .
[9] Huawei Xu, Dianyun Hou. Research Advances in Protein Transport into Chloroplasts in Plant Cell#br#[J]. Chin Bull Bot, 2018, 53(2): 264 -275 .
[10] Li Jiandong, Zheng Huiying. ?ber die Anwendung der Braun-Blanquet's Methode in der Steppen-Untersuchung[J]. Chin J Plan Ecolo, 1983, 7(3): 186 -203 .