Chin Bull Bot ›› 2016, Vol. 51 ›› Issue (3): 311-321.doi: 10.11983/CBB15041

• EXPERIMENTAL COMMUNICATIONS • Previous Articles     Next Articles

Effect of Meteorological Factor on Fruit Growth and Accumulation of Polysaccharides in Lycium barbarum

Guoliang Qi, Xueling Su, Guoqi Zheng*, Juan Yang, Han Bao, Jun Wang   

  1. College of Life Sciences, Ningxia University, Yinchuan 750021, China
  • Received:2015-03-06 Accepted:2015-09-30 Online:2016-05-24 Published:2016-05-01
  • Contact: Guo liang Qi,Su Xueling,Zheng Guoqi E-mail:zhengguoqi1977@163.com
  • About author:

    ? These authors contributed equally to this paper

Abstract:

To explore the relationships between the growth of wolfberry fruit (diameter, length and hundred-grain weight) as well as its polysaccharide content and the main meteorological factors, we chose 5-year-old Lycium barbarum Ningqi 1 from 3 main producing areas—Yinchuan, Baiyin and Delingha—as experimental materials and established regression models. The fruit growth curve of L. barbarum in the 3 areas belonged to the double “S” curve: the first growth spurt, the slow periods and the second growth spurt. The growth period of wolfberry fruit from different areas in different development stages differed, as did the whole stage. Polysaccharide content in fruits from the 3 areas always showed a trend of Yinchuan>Baiyin>Delingha. The content of polysaccharide increased with development. Polysaccharide content increased in the slow phase and rapid phase. Average temperature and average temperature difference between day and night were the two main meteorological factors affecting the growth and development of wolfberry fruit. During the whole developmental process, growth rate of fruit from Yinchuan area increased first with increasing temperature and peaked at 23.71°C, 23.93°C and 23.55°C in the 3 periods, respectively, then slowed despite increasing temperature. Growth rate of fruit from Baiyin area continually increased with increasing temperature, and peaked at 22.99°C, 22.16°C and 21.35°C, as did the growth rate of fruit from the Delingha area, with peak temperature 19.55°C, 21.01°C and 20.64°C.

Table 1

The soil conditions of Yinchuan, Baiyin and Delingha"

The soil conditions 0-20 (cm) 20-40 (cm)
Yinchuan Baiyin Delingha Yinchuan Baiyin Delingha
pH 8.22 8.70 8.70 8.22 8.40 8.77
Total salt (g·kg-1) 0.59 0.48 1.44 0.65 0.46 3.68
Organic matter (g·kg-1) 32.0 12.6 10.8 25.30 9.92 9.75
Hydrolyzable nitrogen (mg·kg-1) 198 114 108 171 51 123
Quick-acting potassium (mg·kg-1) 640 375 139 585 339 182
Available phosphorus (mg·kg-1) 555 351 298 297 106 266
HCO3- (g·kg-1) 0.09 0.06 0.06 0.09 0.05 0.18
Cl- (g·kg-1) 0.09 0.11 0.18 0.08 0.06 0.18
SO42- (g·kg-1) 0.21 0.19 1.08 0.19 0.19 2.254
Ca2+ (g·kg-1) 0.02 0.02 0.12 0.02 0.02 0.08
Mg2+ (g·kg-1) 0.03 0.02 0.21 0.03 0.02 0.22
K+ (g·kg-1) 0.006 0.005 0.007 0.007 0.005 0.056
Na+ (g·kg-1) 0.14 0.14 0.12 0.002 0.110 0.788

Fig. 1

Changes of fruit shape index of different deve- lopment stage in Lycium barbarum((A) Yinchuan; (B) Baiyin; (C) Delingha)"

Fig. 2

Lycium barbarum polysacchande (LBP) content of different development stage in Yinchuan, Baiyin and Deling- ha"

Fig. 3

Dynamic changes of main climatic factors during fruit developing process of Lycium barbarum((A1), (A2) Yinchuan; (B1), (B2) Baiyin; (C1), (C2) Delingha)"

Table 2

The relationship between fruit shape index and the content of Lycium barbarum polysaccharides (LBP) and climatic factors during the development of Lycium barbarum"

Regions Shape index and the
content of LBP
Climatic factors
X1 X2 X3 X4 X5 X6
Yinchuan Diameter 0.655* 0.362 -0.413 0.716* -0.274 -0.089
Length 0.695* 0.408 -0.409 0.746* -0.308 -0.028
Hundred-grain weight 0.692* 0.290 -0.392 0.690* -0.247 -0.180
LBP 0.646 0.642 -0.107 0.893** 0.135 0.309
Baiyin Diameter 0.757* 0.577 -0.023 0.888** -0.503 0.228
Length 0.830** 0.634* -0.077 0.862** -0.383 0.517
Hundred-grain weight 0.749* 0.563 -0.041 0.887** -0.524 0.208
LBP 0.532 0.556 0.134 0.856** -0.360 0.757*
Delingha Diameter 0.814* 0.943** 0.702 0.880** -0.694 0.407
Length 0.877** 0.955** 0.743 0.930** -0.747 0.418
Hundred-grain weight 0.774* 0.912** 0.744 0.856* -0.665 0.404
LBP 0.608 0.675* 0.407 0.836** -0.375 0.401

Fig. 4

Dynamic curve of the mean temperature, mean temperature difference and daytime mean temperature with fruit shape index during the development of Lycium barbarum((A1), (A2) Yinchuan; (B1), (B2) Baiyin; (C1)-(C3) Delingha)"

Table 3

The regression analysis between fruit shape index and the content of LBP and climatic factors during the development of Lycium barbarum"

Regions Shape index Regression equation R F P
Yinchuan Diameter Y1=-20.784+1.554X1+0.827X4-
0.124X5-0.378X6
0.975 19.076 0.007
Length Y2=-34.404+2.636X1+1.525X4-
0.211X5-0.584X6
0.982 26.335 0.004
Hundred-grain weight Y3=-181.977+15.35X1+8.31X4-
1.575X5-5.417X6
0.943 8.017 0.034
LBP Y=-4.864+0.316X4 0.849 15.546 0.008
Baiyin Diameter Y1=-10.098+1.567X1+1.566X4-
0.143X5-1.057X6
0.955 8.324 0.021
Length Y2=-11.212+3.611X1-1.257X3-
0.172X5-1.067X6
0.962 15.519 0.028
Hundred-grain weight Y3=-133.108+17.868X1+17.803X4-
1.735X5-13.435X6
0.918 6.672 0.031
LBP Y=-0.179+0.384X4 0.856 21.874 0.002
Delingha Diameter Y1=-29.834+0.795X1+0.952X4-
0.186X5+0.179X6
0.902 5.331 0.045
Length Y2=-21.145+0.852X2+0.259X3+
1.262X4-1.067X6
0.952 12.168 0.009
Hundred-grain weight Y3=-107.216+21.099X1-9.432X2-
8.523X3+11.502X6
0.904 5.602 0.043
LBP Y=-0.504+0.28X4 0.836 18.563 0.003
[1] 陈珺, 沈富荣, 刘静 (2009). 枸杞气象研究进展. 宁夏农林科技 6, 76-79.
[2] 陈少勇, 韩通, 乔立 (2011). 白银市降水气候资源评估. 干旱区资源与环境 25, 79-85.
[3] 陈彦虎, 顾宁, 刘静, 金伟平 (2012). 宁夏石嘴山市枸杞产量与气象条件的关系. 安徽农业科学 40, 13508-13511.
[4] 程智慧, 陈学进, 赖琳玲, 滕林 (2011). 设施番茄果实生长与环境因子的关系. 生态学报 31, 742-748.
[5] 董静洲, 杨俊军, 王瑛 (2008). 我国枸杞属物种资源及国内外研究进展. 中国中药杂志 33, 2020-2027.
[6] 冯美, 张宁, 宋长冰 (2005). 宁夏枸杞果实生长发育初探. 种子 24, 63-65.
[7] 付三雄, 李成磊, 尼玛卓玛, 唐林, 戚存扣 (2014). 气象因子对油菜种子中油分积累的影响. 植物学报 49, 41-48.
[8] 黄洪林, 余日跃, 黄名阳 (1996). 商品枸杞多糖含量的比较. 基层中药杂志 10, 31-32.
[9] 黄磊, 邵雪梅 (2005). 青海德令哈地区近400年来的降水量变化与太阳活动. 第四纪研究 25, 184-192.
[10] 李剑萍, 张学艺, 刘静 (2004). 枸杞外观品质与气象条件的关系. 气象 30, 51-54.
[11] 刘静, 张晓煜, 杨有林, 马力文, 张学艺, 叶殿秀 (2004). 枸杞产量与气象条件的关系研究. 中国农业气象 25, 17-21.
[12] 刘万仓, 孙磊, 乔善义, 王英华, 王金辉 (2011). 不同产地枸杞药材中多糖的含量测定. 国际药学研究杂志 38, 229-231.
[13] 刘玉兰, 梁培, 刘娟, 桑建人 (2012). 1961-2008年银川市灰霾天气的气候特征. 辽宁气象 28, 55-58.
[14] 毛丽萍, 李亚灵, 赵军良, 张剑国, 巫东堂 (2012). 昼夜温差对番茄幼苗光合特性和物质积累的影响. 华北农学报 27, 128-133.
[15] 魏玉清, 许兴, 王璞 (2007). 不同地区主要栽培宁夏枸杞品种的RAPD分析. 西北农林科技大学学报(自然科学版) 35(1), 91-95.
[16] 谢彩香, 索风梅, 贾光林, 宋经元, 黄林芳, 陈士林 (2011). 人参皂苷与生态因子的相关性. 生态学报 31, 7551-7563.
[17] 杨文君, 肖明, 吕新, 迟德钊 (2014). 不同采摘期对柴达木枸杞外观形状及活性成分影响. 农产品加工(学刊) 8, 50-52.
[18] 杨晓婉, 郑国琦, 许兴, 胡美娟, 封美琦 (2013). 宁夏枸杞果实生长发育期内源激素变化及关系研究. 西北植物学报 33, 116-122.
[19] 杨晓婉, 郑国琦, 杨涓, 许兴, 卢迪, 杨乐 (2014). 宁夏枸杞果实内源激素的变化及其与细胞壁成分和相关酶的关系. 植物学报 49, 30-40.
[20] 杨再强, 朱凯, 彭晓丹, 赵翔, 王学林, 孙擎 (2013). 昼夜温差对设施番茄叶片光合特性和叶绿素荧光参数的影响. 生态学杂志 32, 3199-3196.
[21] 姚珊, 康建宏, 王学龙, 陈建涛, 倪欢, 李春艳 (2013). 花后不同时段高温对春小麦籽粒活力的影响. 西北农业学报 22, 41-47.
[22] 叶玉娣 (2009). 不同等级枸杞中枸杞多糖的含量测定与比较. 浙江中医杂志 44, 921-922.
[23] 张磊, 段晓凤, 李红英, 杜宏娟, 韩颖娟 (2014). 宁夏枸杞生长的气象条件分析及管理措施. 北方果树 4, 16-19.
[24] 张磊, 郑国琦, 滕迎凤, 王俊 (2012). 不同产地宁夏枸杞果实品质比较研究. 西北药学杂志 27, 195-197.
[25] 张宁, 冯美, 宋长冰 (2006). 枸杞果实发育模式及营养物含量变化研究. 干旱地区农业研究 24, 104-107.
[26] 张晓煜, 刘静, 袁海燕, 张学艺 (2003). 枸杞多糖与土壤养分、气象条件的量化关系研究. 干旱地区农业研究 21, 43-47.
[27] 张艳, 程淑华, 伊倩如, 李润怀, 耿力成, 李艳萍, 冯建华, 张运迪, 何仲文 (2014). 枸杞. 中华人民共和国国家标准(GB/T18672-2014). 北京: 中国标准出版社. pp. 1-6.
[28] 赵玉萍, 邹志荣, 白鹏威, 任雷, 李鹏飞 (2010). 不同温度对温室番茄生长发育及产量的影响.西北农业学报19, 133-137.
[29] Gayler S, Leser C, Priesack E, Treutter D (2004). Model- ling the effect of environmental factors on the “trade-off” between growth and defensive compounds in young apple trees.Trees 18, 363-371.
[30] Inthichack P, Nishimura Y, Fukumoto Y (2013). Diurnal temperature alternations on plant growth and mineral absorption in eggplant, sweet pepper, and tomato.Hort Environ Biotechnol 54, 37-43.
[31] Patil GG, Moe R (2009). Involvement of phytochrome B in DIF mediated growth in cucumber.Sci Hortic-Amsterdam 122,164-170.
[32] Wang ZR, Yang GJ, Yi SH, Chen SY, Wu Z, Guan JY, Zhao CC, Zhao QD, Ye BS (2012). Effects of environmental factors on the distribution of plant communities in a semi-arid region of the Qinghai-Tibet Plateau.Ecol Rel 27, 667-675.
[33] Yokoya NS, Kakita H, Obika H, Kitamura T (1999). Effects of environmental factors and plant growth regulators on growth of the red alga Gracilaria vermiculophylla from Shikoku Island, Japan.Hydrobiologia 398, 339-347.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Chin Bull Bot, 1994, 11(专辑): 19 .
[2] Xiao Xiao and Cheng Zhen-qi. Chloroplast 4.5 S ribosomol DNA. II Gene and Origin[J]. Chin Bull Bot, 1985, 3(06): 7 -9 .
[3] CAO Cui-LingLI Sheng-Xiu. Effect of Nitrogen Level on the Photosynthetic Rate, NR Activity and the Contents of Nucleic Acid of Wheat Leaf in the Stage of Reproduction[J]. Chin Bull Bot, 2003, 20(03): 319 -324 .
[4] SONG Li-Ying TAN Zheng GAO Feng DENG Shu-Yan. Advances in in vitro Culture of Cucurbitaceae in China[J]. Chin Bull Bot, 2004, 21(03): 360 -366 .
[5] Shi Jian ming;Gui Yao-lin and Zhu Zhi-qing. Observation on Amitosis of Sugarbeet (Beta vulgaris) Petiole during Dedifferentiation in Vitro[J]. Chin Bull Bot, 1989, 6(03): 155 .
[6] . [J]. Chin Bull Bot, 1994, 11(专辑): 76 .
[7] LI Jun-De YANG Jian WANG Yu-Fei. Aquatic Plants in the Miocene Shanwang Flora[J]. Chin Bull Bot, 2000, 17(专辑): 261 .
[8] XU Jing-Xian WANG Yu-Fei YANG Jian PU Guang-Rong ZHANG Cui-Fen. Advances in the Research of Tertiary Flora and Climate in Yunnan[J]. Chin Bull Bot, 2000, 17(专辑): 84 -94 .
[9] Sun Zhen-xiao Xia Guang-min Chen Hui-min. Karyotype Analysis of Psathyrostachys juncea[J]. Chin Bull Bot, 1995, 12(01): 56 .
[10] . [J]. Chin Bull Bot, 1994, 11(专辑): 8 -9 .