Chin Bull Bot ›› 2013, Vol. 48 ›› Issue (2): 160-167.doi: 10.3724/SP.J.1259.2013.00160

Previous Articles     Next Articles

Effect of Simulated Acid Rain on Gas Exchanges of Three Compositae Invasive Plants

Liying Song1, Zhanhong Ke2, Lanlan Sun2, Changlian Peng2*   

  1. 1School of Life Science, Guangzhou University, Guangzhou 510006, China

    2School of Life Science, South China Normal University, Guangzhou 510631, China
  • Received:2012-08-27 Revised:2012-12-29 Online:2013-04-07 Published:2013-03-01
  • Contact: Changlian Peng E-mail:pengchl@scib.ac.cn

Abstract: We examined the effect of simulated acid rain (pH 2.5, 4.5, 5.6) on gas exchanges of 3 compositae invasive plants (Wedelia trilobata, Mikania micrantha and Chromolaena odoratum). Leaves of the 3 invasive plants showed injury under severe acid rain stress (pH 2.5). The order of the injury degree was C. odoratum > M. micrantha > W. trilobata. The 3 invasive plants showed different photosynthetic responses to simulated acid rain stress. The chlorophyll (Chl) content of C. odoratum and M. micrantha was reduced with decreasing pH, and thus the net photosynthetic rate (Pn) was inhibited, with no difference for W. trilobata. Instead, its Pn increased, although not significantly. Under acid rain treatment, membrane permeability, malondialdehyde content and superoxide dismutase (SOD) and peroxidase activity increased for all plants to varying degrees, which showed some resistance to acid rain. W. trilobata showed the greatest increase in SOD activity under pH 2.5, which suggests its fast response to acid rain stress. W. trilobata had stronger adaptability and tolerance to acid rain than the other 2 invasive plants and could be further investigated in light of increasing acid rain pollution.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hu Shi-yi. Lipoid Bodies in Plant Tissues[J]. Chin Bull Bot, 1994, 11(04): 49 -51 .
[2] CHENG Hong-Yan. Introduction of State Key Laboratory of Biomembrane and Membrane Biotechnology[J]. Chin Bull Bot, 1998, 15(04): 78 .
[3] Liu Dong-zhuo and Li Lan. The Karyotype Analysis of Solanum pseudocapsicum[J]. Chin Bull Bot, 1992, 9(03): 50 .
[4] WANG Bao-Shan;LI De-Quan;ZHAO Shi-Jie;MENG Qing-Wei and ZOU Qi. Effects of Iso-osmotic NaCl and KCl Stress on Growth and Gas Exchange of Sorghum Seedlings[J]. Chin Bull Bot, 1999, 16(04): 449 -453 .
[5] LI Yao-Dong WEI Yu-Ning XU Ben-Mei. Study on the ABA Content and SOD Activity in Ancient Lotus and Modern Lotus Seeds[J]. Chin Bull Bot, 2000, 17(05): 439 -442 .
[6] LI Zhong-Kui HU Hong-Jun LI Ye-Guang. Advances in Molecular Phylogenetic Relationship of Volvocales[J]. Chin Bull Bot, 2002, 19(04): 419 -424 .
[7] WANG Ting SU Ying-Juan ZHU Jian-Ming HUANG Chao LI Xue-Yan. PCR_RFLP Analysis of rbc L Genes in Taxaceae and Related Taxa[J]. Chin Bull Bot, 2001, 18(06): 714 -721 .
[8] . [J]. Chin Bull Bot, 1994, 11(专辑): 51 .
[9] Dong Shu-ting, Hu Chang-hao, Yue Shou-song, Wang Qun-ying, Gao Rong-qi, Pan Zi-long. The Characteristics of Canopy Photosynthesis of Summer Corn (Zea mays) and its Relation with Canopy Structure and Ecological Conditions[J]. Chin J Plan Ecolo, 1992, 16(4): 372 -378 .
[10] YANG Wei, YE Qi-Gang, LI Zuo-Zhou, HUANG Hong-Wen. GENETIC DIFFERENTIATION OF QUANTITATIVE TRAITS AND LOCAL ADAPTABILITY OF REMNANT POPULATIONS OF ISOETES SINENSIS AND IMPLICATIONS FOR CONSERVATION AND GENETIC REINFORCEMENT[J]. Chin J Plan Ecolo, 2008, 32(1): 143 -151 .