Chin Bull Bot ›› 2010, Vol. 45 ›› Issue (03): 327-336.doi: 10.3969/j.issn.1674-3466.2010.03.004

• 研究报告 • Previous Articles     Next Articles

Analysis of Anthocyanins and Flavones in Different-colored Flowers of Chrysanthemum

Wei Sun1,3; Chonghui Li2,4; Liangsheng Wang2; Silan Dai1*   

  1. 1Beijing Forestry University
    2Institute of Botany, Chinese Academy of Sciences
    3Urumqi Botanical Garden
    4Graduate University of Chinese Academy of Sciences
  • Received:2009-12-15 Revised:2010-02-07 Online:2010-05-01 Published:2010-03-01
  • Contact: Silan Dai

Abstract: We analyzed the metabolic intermediate and final products, including anthocyanins and flavones, in 82 cultivars of Chinese chrysanthemum (Chrysanthemum × morifolium) divided into 6 groups by color: white, pink, red, purple, reddish-purple and dark-red. High-performance liquid chromatography (HPLC) with a photodiode array detector (HPLC-PAD) and HPLC-electrospray ionization-mass spectrometry (HPLC-ESI-MSn) were used for qualitative and quantitative analysis of anthocyanin and flavone. The higher the cyanin accumulation in the chrysanthemum flower, the darker the color. The cyanin content in white, pink, red, purple, reddish-purple and dark-red flower groups was 4.68, 111.60, 366.89, 543.56, 1 220.36 and 2 674.95 μg·g–1, respectively, for a significant difference among groups (P<0.01). Quantitative analysis revealed no significant difference among color groups in flavonoid content (P>0.05), except for the dark-red group, which had notably higher content of flavonoids and anthocyanins than other groups (P<0.01). The darker the flower color, the higher the ratios of metabolic flux from the naringenin to eriodicyol and from the eriodicyol to cyanins on the basis of lightness colorimetric values. Thus, the cyanin pathway is the only flower-color metabolic pathway in chrysanthemum, although three different pathways lead to different flower colors. We provide a metabolic flux figure on the anthocyanin metabolic pathway in chrysanthemum comparing anthocyanin content in different flower colors. The different ratios to cyanins from narigenins and eriodicyol are the crucial metabolic points that induce the diverse cyanin products in flowers and then lead to the various flower colors. These results provide a theoretical basis for molecular breeding to improve flower color in chrysanthemum.

No related articles found!
Full text



[1] Zhang Zhen-jue. Some Principles Governing Shedding of Flowers and Fruits in Vanilla fragrans[J]. Chin Bull Bot, 1985, 3(05): 36 -37 .
[2] Qian Gao;Yuying Liu;Yinan Fei;Dapeng Li;Xianglin Liu* . Research Advances into the Root Radial Patterning Gene SHORT-ROOT[J]. Chin Bull Bot, 2008, 25(03): 363 -372 .
[3] Wang Bao-shan;Zou Qi and Zhao Ke-fu. Advances in Mechanism of Crop Salt Tolerance and Strategies for Raising Crop Salt Tolerance[J]. Chin Bull Bot, 1997, 14(增刊): 25 -30 .
[4] HE Feng WU Zhen-Bin. Application of Aquatic Plants in Sewage Treatment and Water Quality Improvement[J]. Chin Bull Bot, 2003, 20(06): 641 -647 .
[5] TIAN Bao-Lin WANG Shi-Jun LI Cheng-Sen CHEN Gui-Ren. An Approach on the Origin Center, Evolution Center and the Mechanics of Evolution and Extinction of the Late Palaeozoic Cathaysian Flora[J]. Chin Bull Bot, 2000, 17(专辑): 21 -33 .
[6] ZHANG Yan FANG Li LI Tian-Fei YAO Zhao-BingJIANG Jin-Hui. Effect of Calcium on the Heat Tolerance and Active Oxygen Metabolism of Tobacco Leaves[J]. Chin Bull Bot, 2002, 19(06): 721 -726 .
[7] JIA Hu-Sen LI De-QuanHAN Ya-Qin. Cytochrome b-559 in Chloroplasts[J]. Chin Bull Bot, 2001, 18(02): 158 -162 .
[8] Dapeng Li;Min Zhang;Qian Gao;Yong Hu;Yikun He*. An Emerging Picture of Plastid Division in Higher Plants[J]. Chin Bull Bot, 2009, 44(01): 43 -51 .
[9] . Phosphate_Stress Protein and Iron_Stress Protein in Plants[J]. Chin Bull Bot, 2001, 18(05): 571 -576 .
[10] ZHANG Da-Yong, JIANG Xin-Hua. An Ecological Perspective on Crop Prduction[J]. Chin J Plan Ecolo, 2000, 24(3): 383 -384 .