Chin Bull Bot ›› 2015, Vol. 50 ›› Issue (2): 227-233.doi: 10.3724/SP.J.1259.2015.00227

• EXPERIMENTAL COMMUNICATIONS • Previous Articles     Next Articles

Comparison of the Characters and Distribution of Vessel Elements in Xylem Among Three Main Pear Rootstocks in China

Xingguang Dong, Yufen Cao*, Kun Wang, Luming Tian, Ying Zhang, Dan Qi   

  1. Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Xingcheng 125100, China
  • Received:2014-03-20 Accepted:2014-08-25 Online:2015-04-10 Published:2015-03-01
  • Contact: Cao Yufen E-mail:yfcaas@263.net
  • About author:

    ? These authors contributed equally to this paper

Abstract:

The characteristics and distribution of vessel elements in xylem of three main pear rootstocks (Pyrus ussuriensis, P. betuleafolia, P. calleryana) in China were examined by tissue isolation, paraffin sectioning and biometric statistics. The pattern of secondary wall thickening and lignification, pitting pattern, main types of perforation plates and proportion of tail, end walls, and tail length of vessel elements did not differ among the species. However, the proportion of vessel elements with multiperforate perforation and two tapered end walls and vessel frequency were higher in P. ussuriensis and in P. betuleafolia than P. calleryana. The diameter of vessel elements and specific conductivity were higher in P. calleryana than in P. ussuriensis and P. betuleafolia. Morphological structure and ecological adaptability are correlated in Pyrus varieties in different habitats. The vessel elements of pear rootstock species from south China are shorter in length and broader in diameter, which appears to directly affect hydraulic conductance capacity and therefore may be suitable for conducting water with high efficiency. The vessel elements of pear rootstock species from north China are longer in length and smaller in diameter with higher vessel frequency, which may help for conducting water safely.

Figure 1

The morphological comparison of vessel element in the xylem of three pear rootstocks (A) Number of tail; (B) Length of tail; (C) Shape of end walls"

Figure 2

Vessel element shape in three pear rootstocks (A), (D), (K) Both end tapered, and tails at both end; (B) One end flat, the other tapered and no tail; (C), (H), (L) Both end flat, and tail at one end; (E), (G) Both end tapered, and tail at one end; (F) One end flat, the other tapered, and tail at both end; (I), (M) Both ends tapered, and no tail; (J) One end flat, the other tapered and tail at one end; (N) With double perforation plates"

Table 1

Comparison of the length, diameter, porosity and frequency of vessel element in three pear rootstocks"

Variety The length of vessel element (μm) The diameter of vessel element (μm) The ratio of length to diameter Xylem porosity
(%)
Vessel frequency (Number∙mm-2)
Pyrus ussuriensis 304.51 a 35.69 b 8.92 a 21.46 a 440.75 a
P. betuleafolia 286.08 a 33.29 c 8.99 a 20.99 a 405.88 ab
P. calleryana 253.32 b 39.51 a 6.66 b 23.41 a 345.85 b

Figure 3

Frequency of length (A) and diameter (B) of vessel element in three pear stock stems"

Figure 4 The cross section of xylem of three pear rootstocks (A) Pyrus ussuriensis; (B) P. betuleafolia; (C) P. calleryana "

Figure 5

Specific conductivity of xylem of three pear rootstocks"

1 白重炎, 高巨营, 张朝 (2011). 13种核桃茎的解剖结构与其抗寒抗旱性研究. 安徽农业科学 39, 16496-16498, 16502.
2 陈树思 (2006). 洋蒲桃次生木质部中导管分子的解剖学. 植物学通报 23, 677-683.
3 董星光, 田路明, 曹玉芬, 张莹 (2012). 我国南方优势产区梨品种主要品质性状评价. 西南农业学报 25, 1811-1817.
4 杜中军, 翟衡, 潘志勇, 解秀芹 (2001). 盐胁迫下苹果砧木光合能力及光合色素的变化. 果树学报 18, 200-203.
5 杜中军, 翟衡, 罗新书, 潘志勇, 程述汉 (2002). 苹果砧木耐盐性鉴定及其指标判定. 果树学报 19, 4-7.
6 樊卫国, 李迎春 (2007). 部分梨砧木的叶片组织结构与抗旱性的关系. 果树学报 25, 17-21.
7 郭学民, 肖啸, 梁丽松, 张立彬, 高荣孚, 王贵禧 (2011). ‘21世纪’桃对其砧木毛桃根系导管分子性状的影响. 园艺学报 38, 1147-1152.
8 李国秀, 郑宝江 (2014). 10种茶藨子属植物导管分子形态特征及其生态适应性比较研究. 植物研究 34, 25-31.
9 李红芳, 田先华, 任毅 (2005). 维管植物导管及其穿孔板的研究进展. 西北植物学报 25, 419-424.
10 李六林, 杨佩芳, 田彩芳 (2000). M系、山定子砧及红星苹果枝条次生木质部组织解剖研究. 见: 中国园艺学会第四届青年学术讨论会论文集. 北京: 中国园艺学会.
11 李正理 (1996). 植物组织制片学. 北京: 北京大学出版社. pp. 91-92.
12 刘和, 杨佩芳, 牛吉山, 高美英 (1996). 杏李次生木质部导管分子的解剖学研究. 山西农业大学学报 16, 404-407.
13 王明浩, 张晓玮, 王婧如, 赵长明 (2013). 一种简易准确测定木质部导水率的新方法. 植物生理学报 49, 297-300.
14 王中英, 杨佩芳, 解思敏, 古润泽 (1993). 梨属果树不同树种的解剖学研究. 落叶果树 (4), 9-11.
15 肖啸, 郭学民, 刘建珍, 张立彬 (2012). 桃3种砧木次生木质部导管分子性状比较. 果树学报 29, 171-176.
16 俞诚鸿 (1954). 次生木质部的进化与植物系统发育的关系. 植物学报 3, 183-194.
17 张大维 (2004). 东北桦木科植物比较解剖学研究. 博士论文. 哈尔滨: 东北林业大学.
18 郑国锠 (1978). 生物显微技术. 北京: 人民教育出版社. pp. 17-92.
19 朱俊义 (2002). 花楸(Sorbus pohuashanensis)导管分子穿孔板的类型及演化. 植物研究 22, 285-288.
20 Carlquist S (1988). Comparative Wood Anatomy.Berlin: Springer-Verlag. pp. 41-81.
21 Hajagos A, Végvári G (2012). Investigation of tissue structure and xylem anatomy of eight rootstocks of sweet cherry (Prunus avium L.).Trees 27, 53-60.
22 Hosokawa M, Suzuki S, Umezawa T, Sato Y (2001). Progress of lignification mediated by intercellular transportation of monolignols during tracheary element differentiation of isolated Zinnia mesophyll cells.Plant Cell Physiol 42, 959-968.
23 Lo Gullo MA, Salleo S, Piaceri EC, Rosso R (1995). Relations between vulnerability to xylem embolism and xylem conduit dimensions in young trees of Quercus cerris.Plant Cell Environ 18, 661-669.
24 Pennel RI, Lamb C (1997). Programmed cell death in plants.Plant Cell 9, 1157-1168.
25 Solari LI, Johnson S, DeJong TM (2006). Hydraulic conductance characteristics of peach (Prunus persica) trees on different rootstocks are related to biomass production and distribution.Tree Physiol 26, 1343-1350.
26 Tippo O (1941). A list of diagnostic characteristics for descriptions of dicotyledonous woods.Trans Illinois Acad Sci 34, 105-106.
27 Tombesi S, Johnson RS, Day KR, DeJong TM (2010). Relationships between xylem vessel characteristics, calculated axial hydraulic conductance and size-controlling capacity of peach rootstocks.Ann Bot 105, 327-331.
28 Zimmermann MH (1983). Xylem Structure and the Ascent of Sap. Berlin: Springer-Verlag. pp. 143.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Dahong Li;Hui Liu;Yanli Yang;Pingping Zhen;Jiansheng Liang. Down-regulation of OsRACK1 by Anti-sense Approach Results in Drought Tolerance Enhancement in Rice (Oryza sativa)[J]. Chin Bull Bot, 2008, 25(06): 648 -655 .
[2] Sun Hong-tao;Qu Jia-xiang;Fu Wei-dong;Dong Li-hui and Liu Xin. The Screening of Best Medium for Flax Pollen Culture by Using Variance Analysis of Multifactorial Test[J]. Chin Bull Bot, 1988, 5(03): 176 -181 .
[3] CAI Neng YI Zi-Li LI Xiang. Advances in Improvement of Tissue Culture Conditions of Plants on Large Scale[J]. Chin Bull Bot, 2003, 20(06): 745 -751 .
[4] Mingkun Liu;Guanjun Liu;Xiufeng Yan. Co-expression of Polygonum sibiricum Glutathione Transferase and Cysteine Synthase Genes in Saccharomyces cerevisiae[J]. Chin Bull Bot, 2008, 25(06): 687 -694 .
[5] FAN Guo-Qiang ZHAI Xiao-Qiao LI Song-Lin. Plant Regeneration from Leaf Calli of PaulowniaPlants[J]. Chin Bull Bot, 2002, 19(01): 92 -97 .
[6] LI Xiu-Ju and MENG Fan-Jing. Changes of Plant Hormones in Normal and Aborted Reproductive Organs of Soybean[J]. Chin Bull Bot, 1999, 16(04): 464 -467 .
[7] Jiyan Qi Jianghua Yang Chaorong Tang. Sucrose Transporter Genes and Their Functions in Plants[J]. Chin Bull Bot, 2007, 24(04): 532 -543 .
[8] Lu Xue-hua and Chen Yang-chun. Tissue Culture and Plantlet Regeneration from Bulb of Lycoris aurea[J]. Chin Bull Bot, 1989, 6(03): 169 .
[9] CHEN Xiong-Wen ZHOU Guang-ShengWANG Feng-You. Simulation of Dry Matter Accumulation in Changbai Larch Seedlings Under Controlled Environment[J]. Chin Bull Bot, 2000, 17(03): 246 -250 .
[10] YIN Heng LI Shu-Guang BAI Xue-Fang DU Yu-Guang. Research Advances in Plant Metabolomics[J]. Chin Bull Bot, 2005, 22(05): 532 -540 .