Chin Bull Bot ›› 2015, Vol. 50 ›› Issue (1): 40-46.doi: 10.3724/SP.J.1259.2015.00040

• EXPERIMENTAL COMMUNICATIONS • Previous Articles     Next Articles

Effect of Different Times of UV-B Radiation on Seedling Growth of Arabidopsis thaliana

Wen Han, Rong Han*   

  1. College of Life Sciences, Shanxi Normal University, Linfen 041004, China
  • Received:2013-11-13 Accepted:2014-03-12 Online:2015-04-09 Published:2015-01-01
  • Contact: Han Rong E-mail:hhwrsl@yahoo.com.cn
  • About author:

    ? These authors contributed equally to this paper

Abstract:

We treated Columbia-0 wild-type Arabidopsis thaliana seedlings with enhanced UV-B radiation (16.67 μW·cm-2 radiant power) at 0.5, 1, 1.5, 2, 2.5, and 3 h. We observed leaf morphological characters and detected root length, leaf chlorophyll content, soluble protein content, malondialdehyde (MDA) concentration, superoxide dismutase (SOD) activity, catalase (CAT) activity and chlorophyll fluorescence characteristics. With a short period of UV-B radiation, roots were elongated and chlorophyll content and soluble protein content were increased in leaf, but prolonged UV-B radiation inhibited the elongated root length; caused decreased leaf chlorophyll content, soluble protein content and chlorophyll fluorescence characteristics such as Fv/Fm and qP; promoted MDA concentration; and increased SOD and CAT activity and qN over time. With 16.67 μW·cm-2 radiation, the optimal time of UV-B radiation was 1.5 h. If UV-B radiation acts as a kind of environmental stress, the extent of damage to the plant was restricted, and the plant would have to adapt to UV-B radiation to let the damage reach a minimum when the stress level reached the limitation.

Figure 1

The leaf morphological character of Arabidopsis thaliana with different periods of time of UV-B radiation (A) Control (CK); (B)-(G) B1-B6 treatments, with enhanced UV-B radiation at 0.5, 1, 1.5, 2, 2.5, and 3 h, respectively"

Figure 2

The root length of Arabidopsis thaliana with different periods of time of UV-B radiation CK: Control; B1-B6 see Figure 1"

Figure 3

The leaf chlorophyll content of Arabidopsis thaliana with different periods of time of UV-B radiation CK: Control; B1-B6 see Figure 1"

The soluble protein content of Arabidopsis thaliana with different periods of time of UV-B radiation CK: Control; B1-B6 see Figure 1"

The malondialdehyde concentration of Arabidopsis thaliana with different periods of time of UV-B radiation CK: Control; B1-B6 see Figure 1"

Figure 6

The superoxide dismutase activity of Arabidopsis thaliana with different periods of time of UV-B radiation CK: Control; B1-B6 see Figure 1"

Figure 7

The catalase activity of Arabidopsis thaliana with different periods of time of UV-B radiation CK: Control; B1-B6 see Figure 1"

Figure 8

The chlorophyll fluorescence characteristics of Arabidopsis thaliana with different periods of time of UV-B radiation CK: Control; B1-B6 see Figure 1"

1 陈慧泽, 翟菁如, 杜美婷, 韩榕 (2011). 增强UV-B辐射对小麦根尖分裂期细胞肌动蛋白的影响. 植物分类与资源学报 33, 306-310.
2 郭爱华, 高丽美, 李永锋, 翟菁茹, 韩榕 (2010). 增强紫外线B辐射对小麦根尖细胞微管骨架的影响. 中国细胞生物学学报 32, 256-260.
3 韩榕 (2002). He-Ne激光对小麦增强UV-B辐射损伤的修复效应及机理. 博士论文. 西安: 西北大学.
4 李合生 (2000). 植物生理生化实验原理和技术. 北京: 高等教育出版社. pp. 185-186.
5 李鹏民, 高辉远, Strasser RJ (2005). 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报 31, 559-566.
6 李晓阳, 陈慧泽, 韩榕 (2013). UV-B辐射对拟南芥种子萌发和幼苗生长的影响. 植物学报 48, 52-58.
7 李元, 祖艳群, 高召华, 高光凯 (2006). UV-B辐射对报春花的生理生化效应. 西北植物学报 26, 179-182.
8 罗丽琼, 陈宗瑜, 周平, 温永琴, 丁金玲 (2008). 低纬高原地区UV-B辐射对报春花丙二醛、蛋白质含量的影响. 广西植物 28, 130-135.
9 马旭俊, 朱大海 (2003). 植物超氧化物歧化酶(SOD)的研究进展. 遗传 25, 225-231.
10 王学奎 (2006). 植物生理生化实验原理和技术(第2版). 北京: 高等教育出版社. pp. 169-170.
11 魏晓雪, 于景华, 李德文, 佟璐, 庞海河, 祖元刚 (2011). UV-B辐射增强对红松幼苗针叶脂质过氧化及抗氧化系统的影响. 林业科学 47(5), 54-59.
12 吴少伯 (1979). 植物组织中蛋白质及同功酶的聚丙烯酰胺凝胶盘状电泳. 植物生理学通讯 (1), 30-33.
13 晏斌, 戴秋杰 (1996). 紫外线B对水稻叶组织中活性氧代谢及膜系统的影响. 植物生理学报 22, 373-378.
14 颜其德, 康建成 (2005). 地球生命的保护伞——臭氧层. 科学 57(6), 54-56.
15 张红霞, 吴能表, 胡丽涛, 洪鸿 (2010). 不同强度UV-B辐射胁迫对蚕豆幼苗生长及叶绿素荧光特性的影响. 西南师范大学学报(自然科学版) 35, 105-110.
16 张美萍, 江玉珍, 于光辉, 苑中原, 陈国祥 (2009). 稀土元素对增强UV-B辐照下小麦抗氧化酶的影响. 核农学报 23, 316-319.
17 张永峰, 殷波 (2009). 混合盐碱胁迫对苗期紫花苜蓿抗氧化酶活性及丙二醛含量的影响. 草业学报 18, 46-50.
18 张志良, 瞿伟菁, 李小方 (2009). 植物生理学实验指导(第4版). 北京: 高等教育出版社. pp. 58-220.
19 Lowry OH, Rosebrough NT, Farr AL, Randall RJ (1951). Protein measurement with the folin phenol reagent.J Biol Chem 193, 265-275.
20 Ranieri A, Lencioni L, Schenone G, Soldatini GF (1993). Glutathione-ascorbic acid cycle in pumpkin plants grown under polluted air in open-top chambers.J Plant Physiol 142, 286-290.
21 Uphem BL, Jahnke LS (1986). Photooxidative reactions in chloroplast thylakoids: evidence for a fenton-type reaction promoted by superoxide or ascorbate.Photosynth Res 8, 235-247.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yang Ying-gen;Zhang Li-jun and Li yu. Studies on the Postharvest Physiology properties of Peach Fruits[J]. Chin Bull Bot, 1995, 12(04): 47 -49 .
[2] Zhou Shi-gong. Applications of Lanthanum in Botanical Research[J]. Chin Bull Bot, 1992, 9(02): 26 -29 .
[3] . [J]. Chin Bull Bot, 1996, 13(专辑): 105 .
[4] 杜维广 王彬如 谭克辉 郝迺斌. An Approach to the Breeding of Soybean with High Photosynthetic Efficiency[J]. Chin Bull Bot, 1984, 2(23): 7 -11 .
[5] ZHAO Yun-Yun ZHOU Xiao-Mei YANG Cai. Production of Hybrid F1 Between Avena magna and Avena nuda and It''s Identification[J]. Chin Bull Bot, 2003, 20(03): 302 -306 .
[6] . Professor Jiayang Li, a Plant Molecular Genetist[J]. Chin Bull Bot, 2003, 20(03): 370 -372 .
[7] . [J]. Chin Bull Bot, 1996, 13(专辑): 100 -101 .
[8] Qiong Jiang, Youning Wang, Lixiang Wang, Zhengxi Sun, Xia Li. Validation of Reference Genes for Quantitative RT-PCR Analysis in Soybean Root Tissue under Salt Stress[J]. Chin Bull Bot, 2015, 50(6): 754 -764 .
[9] MA Ke-Ming. Advances of the Study on Species Abundance Pattern[J]. Chin J Plan Ecolo, 2003, 27(3): 412 -426 .
[10] ZHANG Zhi-Meng, WAN Shu-Bo, NING Tang-Yuan, DAI Liang-Xiang. EFFECTS OF NITROGEN LEVEL ON NITROGEN METABOLISM AND CORRELATING ENZYME ACTIVITY IN PEANUT[J]. Chin J Plan Ecolo, 2008, 32(6): 1407 -1416 .