Chin Bull Bot ›› 2020, Vol. 55 ›› Issue (3): 308-317.doi: 10.11983/CBB19231

• EXPERIMENTAL COMMUNICATIONS • Previous Articles     Next Articles

Patterns and Influence Factors of Fine Root Turnover in Forest Ecosystems

Jianing Zhao1,Yun Liang2,Ying Liu3,Yujue Wang1,Qianru Yang1,Chunwang Xiao1,*()   

  1. 1College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
    2State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    3College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, China
  • Received:2019-11-29 Accepted:2020-02-26 Online:2020-07-06 Published:2020-05-01
  • Contact: Chunwang Xiao


Root turnover is a key process in the carbon cycle of terrestrial ecosystems, and plays an important role in studying soil carbon pool changes and global climate change. Various methods for measuring root turnover rate have been described, from which highly variable results are obtained. Moreover, the studies on root turnover in large regional scales are not sufficient, making the patterns of root turnover in global forest ecosystem still not clear. This study integrates the fine root turnover spatial pattern of five forest types in the world by collecting literature data and unifying the calculation method of turnover rate. Combined with soil physical and chemical properties and climate data, several factors driving the fine root turnover of forest ecosystems are obtained. We show that there was a significant difference in the different forest ecosystems and the fine root turnover rate almost decreased with the increase of latitude. The fine root turnover rate of forest ecosystems was positively correlated to the mean annual temperature and the mean annual precipitation. The fine root turnover rate of forest ecosystems was positively correlated to the soil organic carbon content but negatively correlated to soil pH. This study provides a model to study the fine root turnover laws and mechanisms of forest ecosystems.

Key words: fine root turnover, global forest scale, climate factor, soil properties

Table 1

Distribution of study sites (see Appendix 1 for data sources)"

Plot Continent Country Longitude and latitude Plot Continent Country Longitude and latitude
1 Asia India 77°15'E, 8°28'59"N 36 Asia China 128°5'40.56"E, 42°23'57.48"N
2 Asia India 76°49'59"E, 9°22'1"N 37 Asia China 128°4'59.88"E, 42°24'N
3 Asia India 77°25'58.8"E, 9°31'58.8"N 38 Asia China 128°6'29.16"E, 42°25'15.24"N
4 Asia India 79°55'1.2"E, 12°10'58.8"N 39 Asia China 128°30'E, 43°4'58.8"N
5 Asia China 110°31'19.2"E, 20°1'1.2"N 40 Asia China 127°31'48"E, 44°22'48"N
6 Asia China 112°49'58.8"E, 22°34'1.2"N 41 Asia China 88°13'48"E, 44°37'12"N
7 Asia China 117°18'E, 23°35'24"N 42 Asia Japan 142°6'E, 45°3'N
8 Asia India 91°55'58.8"E, 25°34'1.2"N 43 Asia China 128°53'13.2"E, 47°10'51.6"N
9 Asia China 117°57'E, 26°28'1.2"N 44 Asia China 127°54'36"E, 47°13'48"N
10 Asia China 110°7'58.8"E, 27°9'N 45 North America Panama 82°15'W, 8°45'N
11 Asia China 119°10'48"E, 27°52'12"N 46 North America Puerto Rico 65°49'1.2"W, 18°40'1.2"N
12 Asia China 113°1'48"E, 28°7'12"N 47 North America USA 84°30'W, 31°15'N
13 Asia China 91°19'58.8"E, 29°40'1.2"N 48 North America USA 92°W, 32°N
14 Asia China 121°46'58.8"E, 29°48'N 49 North America USA 111°45'W, 35°16'1.2"N
15 Asia China 103°25'1.2"E, 29°58'58.8"N 50 North America USA 76°27'43.2"W, 36°31'58.8"N
16 Asia China 102°48'E, 30°1'1.2"N 51 North America USA 82°22'1.2"W, 39°10'58.8"N
17 Asia China 117°24'E, 30°22'12"N 52 North America USA 78°45'57.6"W, 41°35'52.8"N
18 Asia China 117°43'48"E, 30°22'48"N 53 North America USA 72°11'24"W, 42°31'51.6"N
19 Asia India 79°56'24"E, 30°28'58.8"N 54 North America USA 71°45'W, 43°55'58.8"N
20 Asia China 117°53'24"E, 30°34'48"N 55 North America USA 72°13'1.2"W, 44°N
21 Asia China 117°54'E, 30°34'48"N 56 North America USA 122°13'1.2"W, 44°13'58.8"N
22 Asia China 121°54'25.2"E, 30°52'55.2"N 57 North America USA 121°34'1.2"W, 44°25'58.8"N
23 Asia India 75°40'12"E, 30°54'N 58 North America USA 68°41'6"W, 44°55'19.2"N
24 Asia China 119°13'58.8"E, 31°58'58.8"N 59 North America USA 122°W, 46°N
25 Asia Japan 131°12'E, 32°3'N 60 North America Canada 89°28'58.8"W, 49°32'24"N
26 Asia China 108°7'58.8"E, 33°58'1.2"N 61 Europe Italy 14°33'E, 41°43'1.2"N
27 Asia Japan 135°37'1.2"E, 34°4'58.8"N 62 Europe France 3°49'4.8"E, 43°41'16.8"N
28 Asia China 116°49'58.8"E, 35°52'58.8"N 63 Europe France 4°37'48"E, 49°45'36"N
29 Asia Japan 104°7'55.2"E, 36°N 64 Europe Germany 10°26'2.4"E, 51°4'48"N
30 Asia Japan 140°13'1.2"E, 36°6'N 65 Europe Belgium 3°51'E, 51°6'N
31 Asia Korea 127°42'E, 37°30'N 66 Europe Estonia 26°45'E, 58°46'1.2"N
32 Asia China 112°31'1.2"E, 37°39'N 67 Europe Finland 30°58'1.2"E, 62°46'58.8"N
33 Asia China 115°25'8.4"E, 39°57'N 68 South America Brazil 56°58'59"W, 3°4'1"S
34 Asia China 87°51'25.2"E, 40°27'57.6"N 69 South America Brazil 47°56'56"W, 1°17'53"S
35 Asia China 117°15'E, 42°19'12"N 70 Africa C?te d'Ivoire 5°13'1.2"W, 6°16'59"N

Figure 1

Patterns of fine root turnover rate in forest ecosystems with latitude ** indicates significant correlation at the 0.01 level."

Table 2

Fine root turnover rate in different types of forest ecosystem"

Forest type Data number Means ± SE
Tropical rainforest 11 1.312±0.182 a
Subtropical evergreen broad-leaved forest 9 0.802±0.161 b
Warm temperate deciduous broad-leaved forest 13 0.724±0.859 b
Temperate coniferous and broad-leaved mixed forest 30 0.766±0.995 b
Cold temperate coniferous forest 7 0.602±0.106 b

Figure 2

Relationships between fine root turnover rate in forest ecosystems and mean annual temperature (A) and mean annual precipitation (B) * indicates significant correlation at the 0.05 level."

Figure 3

Relationships between forest fine root turnover rate and soil physical and chemical properties CEC: Soil cation exchange capacity. * indicates significant correlation at the 0.05 level."

Table 3

Pearson correlations among latitude, mean annual temperature, mean annual precipitation, soil organic carbon content, soil pH, soil bulk density, CEC, sand fraction, silt fraction, clay fraction, and fine root turnover rate"

organic carbon
Soil pH Soil bulk density CEC Sand
lg (fine root turnover rate)
Latitude -0.867** -0.609** -0.164 0.168 0.348** 0.157 0.124 0.097 0.105 -0.367**
MAT 0.576** -0.029 -0.009 -0.332** -0.03 -0.211 -0.011 0.361** 0.233*
MAP -0.101 -0.094 -0.254* -0.048 -0.167 0.052 0.221 0.240*
Soil organic carbon -0.449** 0.14 0.11 0.126 -0.171 0.029 0.254*
Soil pH 0.026 0.235 -0.041 0.231 -0.165 -0.297*
Soil bulk density -0.464** 0.900** -0.599** -0.852** -0.098
CEC -0.545** 0.376* 0.491** -0.071
Sand fraction -0.823** -0.772** 0.038
Clay fraction 0.284* -0.146
Silt fraction 0.104
[1] 陈莉莉, 袁志友, 穆兴民, 焦峰, 邓强 (2015). 森林细根生产力研究进展. 西北林学院学报 30(3), 70-75, 80.
[2] 范月君, 侯向阳, 石红霄, 师尚礼 (2012). 气候变暖对草地生态系统碳循环的影响. 草业学报 21, 294-302.
[3] 江洪, 白莹莹, 饶应福, 陈冲, 蔡永立 (2016). 新围垦盐土地三种人工林群落细根生物量及其影响因素分析. 植物学报 51, 343-352.
[4] 赖宗锐 (2015). 四种典型沙生灌木细根动态及其对土壤有机碳的影响. 博士论文. 北京: 北京林业大学. pp. 10-11.
[5] 李高飞, 任海 (2004). 中国不同气候带各类型森林的生物量和净第一性生产力. 热带地理 24, 306-310.
[6] 李凌浩, 林鹏, 邢雪荣 (1998). 武夷山甜槠林细根生物量和生长量研究. 应用生态学报 9, 337-340.
[7] 刘秀 (2018). 红树林地上凋落物和细根对土壤有机质的相对贡献. 博士论文. 北京: 中国林业科学研究院. pp. 3.
[8] 梅莉, 王政权, 程云环, 郭大立 (2004). 林木细根寿命及其影响因子研究进展. 植物生态学报 28, 704-710.
[9] 倪惠菁, 苏文会, 范少辉, 曾宪礼, 金艺 (2019). 养分输入方式对森林生态系统土壤养分循环的影响研究进展. 生态学杂志 38, 863-872.
[10] 孙元丰, 万宏伟, 赵玉金, 陈世苹, 白永飞 (2018). 中国草地生态系统根系周转的空间格局和驱动因子. 植物生态学报 42, 337-348.
[11] 王瑞丽, 程瑞梅, 肖文发, 封晓辉, 刘泽彬, 王晓荣 (2012). 森林细根生产和周转的影响因素. 世界林业研究 25, 19-24.
[12] 王韶仲 (2017). 树木细根形态结构和生物量动态的地理变异. 博士论文. 哈尔滨: 东北林业大学. pp. 57-58.
[13] 王玉霞 (2014). 地下净生产力、光合产物分配及根系周转对不同草地恢复措施的响应. 硕士论文. 长春: 东北师范大学. pp. 5.
[14] 吴伊波, 车荣晓, 马双, 邓永翠, 朱敏健, 崔骁勇 (2014). 高寒草甸植被细根生产和周转的比较研究. 生态学报 34, 3529-3537.
[15] 肖春旺, 杨帆, 柳隽瑶, 周勇, 苏佳琦, 梁韵, 裴智琴 (2017). 陆地生态系统地下碳输入与输出过程研究进展. 植物学报 52, 652-668.
[16] 杨海廷 (2019). 土壤性能对树木细根生长的影响. 乡村科技 (21), 54-55.
[17] 张丽, 张爽 (2018). 土壤pH值对绿化树生长的影响. 江西农业(16), 92, 97.
[18] 张小全, 吴可红 (2001). 森林细根生产和周转研究. 林业科学 37(3), 126-138.
[19] 张鑫, 邢亚娟, 闫国永, 王庆贵 (2018). 细根对降水变化响应的meta分析. 植物生态学报 42, 164-172.
[20] 周松文 (2013). 不同气候带森林凋落物的变化. 现代园艺 (12), 15.
[21] Diabate B (2016). 松嫩草地地下净生产力和细根动态对不同的管理实践的响应. 博士论文. 长春: 东北师范大学. pp. 78-79.
[22] Aber JD, Melillo JM, Nadelhoffer KJ, McClaugherty CA, Pastor J (1985). Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: a comparison of two methods. Oecologia 66, 317-321.
[23] Arthur MA, Fahey TJ (1992). Biomass and nutrients in an Engelmann spruce—subalpine fir forest in north central Colorado: pools, annual production, and internal cycling. Can J For Res 22, 315-325.
[24] Bai WM, Wan SQ, Niu SL, Liu WX, Chen QS, Wang QB, Zhang WH, Han XG, Li LH (2010). Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling. Glob Chang Biol 16, 1306-1316.
[25] Brunner I, Bakker MR, Björk RG, Hirano Y, Lukac M, Aranda X, Børja I, Eldhuset TD, Helmisaari HS, Jourdan C, Konôpka B, López BC, Pérez CM, Persson H, Ostonen I (2013). Fine-root turnover rates of European forests revisited: an analysis of data from sequential coring and ingrowth cores. Plant Soil 362, 357-372.
[26] Cai HY, Li FR, Jin GZ (2019). Fine root biomass, production and turnover rates in plantations versus natural forests: effects of stand characteristics and soil properties. Plant Soil 436, 463-474.
[27] Cavelier J, Wright SJ, Santamaria J (1999). Effects of irrigation on litterfall, fine root biomass and production in a semideciduous lowland forest in Panama. Plant Soil 211, 207-213.
[28] Gill RA, Jackson RB (2000). Global patterns of root turnover for terrestrial ecosystems. New Phytol 147, 13-31.
[29] Heimann M, Reichstein M (2008). Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289-292.
[30] Henry AL, Cleland EE, Field CB, Vitousek PM (2005). Interactive effects of elevated CO2, N deposition and climate change on plant litter quality in a California annual grassland. Oecologia 142, 465-473.
[31] Iversen CM, Ledford J, Norby RJ (2008). CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest. New Phytol 179, 837-847.
[32] Joslin JD, Wolfe MH, Hanson PJ (2000). Effects of altered water regimes on forest root systems. New Phytol 147, 117-129.
[33] Kosola KR, Eissenstat DM, Graham JH (1995). Root demography of mature citrus trees: the influence of Phytophthora nicotianae. Plant Soil 171, 283-288.
[34] Liu L, Yang F, Wang YJ, Shen X, Janssens IA, Guenet B, Xiao CW (2019). Fine-root turnover, litterfall, and soil microbial community of three mixed coniferous-deciduous forests dominated by Korean pine (Pinus koraiensis) along a latitudinal gradient. Front Plant Sci 10, 1298.
[35] Liu W, Wang GL, Yu KX, Li P, Xiao L, Liu GB (2018). A new method to optimize root order classification based on the diameter interval of fine root. Sci Rep 8, 2960.
[36] Luo YQ (2003). Uncertainties in interpretation of isotope signals for estimation of fine root longevity: theoretical considerations. Glob Chang Biol 9, 1118-1129.
[37] Majdi H, Pregitzer K, Morén AS, Nylund JE, Ågren GI (2005). Measuring fine root turnover in forest ecosystems. Plant Soil 276, 1-8.
[38] Matamala R, Gonzàlez-Meler MA, Jastrow JD, Norby RJ, Schlesinger WH (2003). Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science 302, 1385-1387.
pmid: 14631037
[39] Pritchard SG, Strand AE (2008). Can you believe what you see? Reconciling minirhizotron and isotopically derived estimates of fine root longevity. New Phytol 177, 287-291.
[40] Silver WL, Miya RK (2001). Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129, 407-419.
pmid: 28547196
[41] Trumbore SE, Gaudinski JB (2003). The secret lives of roots. Science 302, 1344-1345.
doi: 10.1126/science.1091841 pmid: 14631025
[42] Vogt KA, Vogt DJ, Bloomfield J (1998). Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant Soil 200, 71-89.
[43] Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjornsen H (1995). Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187, 159-219.
[44] Wang AS, Angle JS, Chaney RL, Delorme TA, McIntosh M (2006). Changes in soil biological activities under reduced soil pH during Thlaspi caerulescens phytoextraction. Soil Biol Biochem 38, 1451-1461.
[45] Wang SZ, Wang ZQ, Gu JC (2017). Variation patterns of fine root biomass, production and turnover in Chinese forests. J For Res 28, 1185-1194.
[46] Xiao CW, Janssens IA, Sang WG, Wang RZ, Xie ZQ, Pei ZQ, Yi Y (2010). Belowground carbon pools and dynamics in China’s warm temperate and sub-tropical deciduous forests. Biogeosciences 7, 275-287.
[47] Xiao CW, Sang WG, Wang RZ (2008). Fine root dynamics and turnover rate in an Asia white birch forest of Donglingshan Mountain, China. For Ecol Manage 255, 765-773.
[48] Yuan ZY, Chen HYH (2010). Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses. CRC Crit Rev Plant Sci 29, 204-221.
[49] Zhou Y, Su JQ, Janssens IA, Zhou GS, Xiao CW (2014). Fine root and litterfall dynamics of three Korean pine (Pinus koraiensis) forests along an altitudinal gradient. Plant Soil 374, 19-32.
[1] Aizezitiyuemaier MAIMAITI, Yusufujiang RUSULI, HE Hui, Baihetinisha ABUDUKERIMU. Spatio-temporal characteristics of vegetation water use efficiency and its relationship with climate factors in Tianshan Mountains in Xinjiang from 2000 to 2017 [J]. Chin J Plant Ecol, 2019, 43(6): 490-500.
[2] Yuan-Feng SUN, Hong-Wei WAN, Yu-Jin ZHAO, Shi-Ping CHEN, Yong-Fei BAI. Spatial patterns and drivers of root turnover in grassland ecosystems in China [J]. Chin J Plan Ecolo, 2018, 42(3): 337-348.
[3] WANG Li-Hua, XUE Jing-Yue, XIE Yu, WU Yan. Spatial distribution and influencing factors of soil organic carbon among different climate types in Sichuan, China [J]. Chin J Plan Ecolo, 2018, 42(3): 297-306.
[4] Tian WANG, Shan XU, Meng-Ying ZHAO, He LI, Dan KOU, Jing-Yun FANG, Hui-Feng HU. Allocation of mass and stability of soil aggregate in different types of Nei Mongol grasslands [J]. Chin J Plan Ecolo, 2017, 41(11): 1168-1176.
[5] Shaojun Wang*,Hong Wang,Jihang Li. Distribution characteristics of ant mounds and correlating factors across different succession stages of tropical forests in Xishuangbanna [J]. Biodiv Sci, 2016, 24(8): 916-921.
[6] LIU Jun, YANG Qing-Pei, YU Ding-Kun, SONG Qing-Ni, ZHAO Guang-Dong, and WANG Bing. Contribution of fine root to soil nutrient heterogeneity at two sides of the bamboo and broadleaved forest interface [J]. Chin J Plan Ecolo, 2013, 37(8): 739-749.
[7] GAO Lu-Shuang, WANG Xiao-Ming, ZHAO Xiu-Hai. Response of Pinus koraiensis and Picea jezoensis var. komarovii to climate in the transition zone of Changbai Mountain, China [J]. Chin J Plan Ecolo, 2011, 35(1): 27-34.
[9] Jianzhong Lu, Wei Qiu, Jiakuan Chen, Bo Li. Impact of invasive species on soil properties: Canadian goldenrod (Soli-dago canadensis) as a case study [J]. Biodiv Sci, 2005, 13(4): 347-356.
[10] MEI Li, WANG Zheng-Quan, CHENG Yun-Huan, Guo Da-Li. A REVIEW: FACTORS INFLUENCING FINE ROOT LONGEVITY IN FOREST ECOSYSTEMS [J]. Chin J Plan Ecolo, 2004, 28(5): 704-710.
[11] ZHANG Yuan-Dong, XU Ying-Tao, GU Feng-Xue, PAN Xiao-Ling. Correlation Analysis of NDVI With Climate and Hydrological Factors in Oasis and Desert [J]. Chin J Plan Ecolo, 2003, 27(6): 816-822.
Full text



[1] Lu Zhong-shu. Plant Growth Regutators in Relation to Plant Water Status[J]. Chin Bull Bot, 1985, 3(04): 1 -6 .
[2] Li Da Jue;Han Yun-zhou and Wan Li-ping. Studies on Germplasm Collections of Carthamus tinctorius IV Screening of the characterization of Seed Domancy[J]. Chin Bull Bot, 1990, 7(02): 50 -52 .
[3] . [J]. Chin Bull Bot, 1999, 16(增刊): 45 -46 .
[4] Yang Hong-yuan. Basic Principle and Method of Fluorescence Microscopy[J]. Chin Bull Bot, 1984, 2(06): 45 -48 .
[5] LU Jin-Yao;LUO Ai-Ling and LIANG Zheng. Some Improvement of TD-PAGE Technology[J]. Chin Bull Bot, 1998, 15(03): 69 -72 .
[6] LI Ling-Hao and CHEN Zuo-Zhong. The Global Carbon Cycle in Grassland Ecosystems and Its Responses to Global Change I . Carbon Flow Compartment Model, Inputs and Storage[J]. Chin Bull Bot, 1998, 15(02): 14 -22 .
[7] Huanhuan Xu, Jian Kang, Mingxiang Liang. Research Advances in the Metabolism of Fructan in Plant Stress Resistance[J]. Chin Bull Bot, 2014, 49(2): 209 -220 .
[8] . [J]. Chin Bull Bot, 2013, 48(1): 4 -5 .
[9] . [J]. Chin Bull Bot, 1996, 13(专辑): 45 .
[10] SHU Qun-Fang;ZHOU Lu;LI Wen-Bin;ZHANG LI-Ming and SUN Yong-Ru. Study on Gel Electrophoresis of Protein from Plant and Our Improved Methods[J]. Chin Bull Bot, 1998, 15(06): 73 -78 .