Chin Bull Bot ›› 2017, Vol. 52 ›› Issue (3): 346-357.doi: 10.11983/CBB16095

Previous Articles     Next Articles

The Function of Sucrose Nonfermenting-1 Related Protein Kinases in Stress Signaling

Jinfei Zhang1,2, Xia Li2*, Yinfeng Xie1   

  1. 1College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China
    2Nanjing Branch of China National Center for Rice Improvement, Jiangsu High Quality Rice Engineering Technology Research Center, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
  • Received:2016-04-25 Accepted:2016-07-08 Online:2017-05-27 Published:2017-05-01
  • Contact: Li Xia E-mail:jxpplx@jaas.ac.cn
  • About author:

    # Co-first authors

Abstract:

SnRKs (sucrose nonfermenting-1-related protein kinases) are key protein kinases in stress responses. In response to biotic stresses, they are involved in reactive oxygen species and salicylic acid-mediated signaling transduction pathways to enhance the plant tolerance to biological stress. In response to abiotic stresses, SnRKs enhance the plant tolerance to drought, salinity and high temperatures by intracellular signaling mediated by abscisic acid (ABA), regulate cellular energy homeostasis and maintain ion balance by ABA-independent signaling. SnRKs are the main regulators in stress signaling in recent research and we give a brief outlook for future study.

Figure 1

The plant SnRK2s is involved in the main ABA pathway (motified from Axel et al., 2016)(A) In the absence of ABA, the ABA receptors are inactivated and PP2C (Protein Phosphatase 2C) proteins inhibit SnRK2s; (B) In the presence of ABA, the ABA receptors PYR/PIL/RCAR proteins bind to ABA and in turn inhibit PP2C activity, allowing the activation of SnRK2s through autophosphorylation. Activated SnRK2s then phosphorylate their downstream transcription factors, which modulate ABA responding gene expression. They can also phosphorylate other proteins, such as AKT1 and NADPH oxidases. Together, these events lead to the establishment of the ABA response."

Table 1

Different functions of SnRKs gene family of Arabidopsis"

功能 途径 SnRKs亚家族基因名称 基因座位号 基因证号 参考文献
信号 SnRK1.1 (KIN10) At3G01090 821259 Polge and Thomas, 2007
SnRK1.2 (KIN11) At3G29160 822566 Polge and Thomas, 2007
SnRK1.3 At5G39440 833940 Mair et al., 2015
钙离子 SnRK3.16 (CIPK1) At3G17510 821016 D'Angelo et al., 2006
SnRK3.5 (CIPK19) At5G45810 834621 Zhou et al., 2015a
硝酸盐 SnRK3.13 (CIPK8, PKS11) At4G24400 828542 Hu et al., 2009
激素
信号
脱落酸 SnRK2.2 At3G50500 824214 Feng et al., 2014
SnRK2.3 AT5G66880 9305254 Wang et al., 2015a
SnRK2.6 (OST1) At4G33950 829541 Yoshida et al., 2015
SnRK3.14 (CIPK6) At4G30960 829221 Chen et al., 2013
SnRK3.17 (CIPK3, PKS12) At2G26980 817240 Kim et al., 2003
SnRK3.22 (CIPK11, PKS5) At2G30360 817586 Zhou et al., 2015b


生物
胁迫
水杨酸 SnRK2.8 At1G78290 844164 Lee et al., 2015
SnRK3.22 (CIPK11, PKS5) At2G30360 817586 Xie et al., 2010
活性氧 SnRK3.26 (CIPK26) At5G21326 832246 Drerup et al., 2013
SnRK3.14 (CIPK6) At4G30960 829221 Chen et al., 2013
非生物胁迫 非生物胁迫 SnRK3.1 (CIPK15, PKS3) At5G01810 830556 Kanwar et al., 2014
SnRK3.2 (CIPK2) At5G07070 830598
SnRK3.6 (CIPK20, PKS18) At5G45820 834622
SnRK3.7 (CIPK13) At2G34180 817979
SnRK3.8 (CIPK10) At5G58380 835951
寒冷 SnRK3.10 (CIPK7, PKS7) At3G23000 821874 Huang et al., 2011
SnRK3.17 (CIPK3, PKS12) At2G26980 817240 Kim et al., 2003
缺氧 SnRK3.25 (CIPK25) At5G25110 832582 Meena et al., 2015
渗透胁迫 SnRK3.18 (CIPK16, PKS15) At2G25090 817047 Amarasinghe et al., 2016
SnRK3.4 (CIPK21) At5G57630 835868 Pandey et al., 2015
SnRK2.7 (SRK2F) At4G40010 830162 Fujii et al., 2011
SnRK2.9 At2G23030 816833 Fujii et al., 2011
SnRK2.1 (SRK2G) At5G08590 830760 Fujii et al., 2011
盐碱 SnRK3.9 (CIPK12) At4G18700 827604 Steinhorst et al., 2015
SnRK3.11 (SOS2, CIPK24) At5G35410 833502 Park et al., 2013
SnRK3.12 (CIPK9, PKS6) At1G01140 839349 Mogami et al., 2015
SnRK3.15 (PKS24, CIPK14) At5G01820 831765 Lin et al., 2014
SnRK3.22 (CIPK11, PKS5) At2G30360 817586 Zhou et al., 2015b
SnRK3.18 (CIPK16, PKS15) At2G25090 817047 Amarasinghe et al., 2016
SnRK3.23 (CIPK23, PKS17) At1G30270 839907 Wang et al., 2016
生长
发育
根生长 SnRK2.10 At1G60940 842385 McLoughlin et al., 2012
SnRK2.4 (ASK1, SRK2A) At1G10940 837637 McLoughlin et al., 2012
SnRK3.25 (CIPK25) At5G25110 832582 Meena et al., 2015
种子发芽 SnRK3.22 (CIPK11, PKS5) At2G30360 817586 Zhou et al., 2015b
幼苗生长 SnRK1.1 (KIN10) At3G01090 821259 O'Brien et al., 2015
开花 SnRK1.1 (KIN10) At3G01090 821259 Jeong et al., 2015
[1] Amarasinghe S, Watson-Haigh NS, Gilliham M, Roy S, Baumann U (2016). The evolutionary origin ofCIPK16: a gene involved in enhanced salt tolerance. Mol Phylogenet Evol 100, 135-147.
[2] Avila J, Gregory OG, Su D, Deeter TA, Chen S, Silva- Sanchez C, Xu S, Martin GB, Devarenne TP (2012). The β-subunit of the SnRK1 complex is phosphorylated by the plant cell death suppressor Adi3.Plant Physiol 159, 1277-1290.
[3] Axel Z, Jean C, Heribert H (2016). The role of MAPK modu- les and ABA during abiotic stress signaling.Trends Plant Sci 21, 677-685.
[4] Baena-González E, Sheen J (2008). Convergent energy and stress signaling.Trends Plant Sci 13, 474-482.
[5] Batistič O, Kudla J (2009). Plant calcineurin B-like proteins and their interacting protein kinases.Biochim Biophys Acta 1793, 985-992.
[6] Batistič O, Waadt R, Steinhorst L, Held K, Kudla J (2010). CBL-mediated targeting of CIPKs facilitates the decoding of calcium signals emanating from distinct cellular stores.Plant J 61, 211-222.
[7] Chaves-Sanjuan A, Sanchez-Barrena MJ, Gonzalez- Rubio JM, Moreno M, Ragel P, Jimenez M, Pardo JM, Martinez-Ripoll M, Quintero FJ, Albert A (2014). Struc- tural basis of the regulatory mechanism of the plant CIPK family of protein kinases controlling ion homeostasis and abiotic stress.Proc Natl Acad Sci USA 111, 4532-4541.
[8] Chen L, Ren F, Zhou L, Wang QQ, Zhong H, Li XB (2012). The Brassica napus calcineurin B-Like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6) component is involved in the plant response to abiotic stress and ABA signaling. J Exp Bot 63, 6211-6222.
[9] Chen L, Wang QQ, Zhou L, Ren F, Li DD, Li XB (2013). Arabidopsis CBL-interacting protein kinase (CIPK6) is involved in plant response to salt/osmotic stress and ABA. Mol Biol Rep 40, 4759-4767.
[10] Coello P, Hey SJ, Halford NG (2011). The sucrose non- fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield.J Exp Bot 62, 883-893.
[11] Confraria A, Martinho C, Elias A, Rubio-Somoza I, Baena-González E (2013). miRNAs mediate SnRK1- dependent energy signaling in Arabidopsis.Front Plant Sci 4, 197.
[12] Crozet P, Margalha L, Butowt R, Fernandes N, Elias CA, Orosa B, Tomanov K, Teige M, Bachmair A, Baena- González E (2016). SUMOylation represses SnRK1 signaling in Arabidopsis.Plant J 85, 120-133.
[13] Cuéllar T, Azeem F, Andrianteranagna M, Pascaud F, Verdeil JL, Sentenac H, Zimmermann S, Gaillard I (2013). Potassium transport in developing fleshy fruits: the grapevine inward K+ channel VvK1.2 is activated by CIPK-CBL complexes and induced in ripening berry flesh cells.Plant J 73, 1006-1018.
[14] D'Angelo C, Weinl S, Batistic O, Pandey GK, Cheong YH, Schültke S (2006). Alternative complex formation of the Ca2+ regulated protein kinase CIPK1 controls abscisic acid dependent and independent stress responses in Arabidopsis.Plant J 48, 857-872.
[15] Danquah A, de Zelicourt A, Colcombet J, Hirt H (2014). The role of ABA and MAPK signaling pathways in plant abiotic stress responses.Biotechnol Adv 32, 40-52.
[16] Dong XF, Cui N, Wang L, Zhao XC, Qu B, Li TL, Zhang GL (2012). The SnRK protein kinase family and the function of SnRK1 protein kinase.Int J Agric Biol 14, 196-200.
[17] Drerup MM, Schlücking K, Hashimoto K, Manishankar P, Steinhorst L, Kuchitsu K, Kudla J (2013). The calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF.Mol Plant 6, 559-569.
[18] Emanuelle S, Hossain MI, Moller IE, Pedersen HL, Meene AM, Doblin MS, Koay A, Oakhill JS, Scott JW, Willats WGT, Kemp BE (2015). SnRK1 from Arabidopsis thaliana is an atypical AMPK. Plant J 82, 183-192.
[19] Feng CZ, Chen Y, Wang C, Kong YH, Wu WH, Chen YF (2014). Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development.Plant J 80, 654-668.
[20] Fuglsang AT, Guo Y, Cuin TA, Qiu Q, Song C, Kristiansen KA, Bych K, Schulz A, Shabala S, Schumaker KS (2007). Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein.Plant Cell 19, 1617-1634.
[21] Fujii H, Verslues PE, Zhu JK (2011). Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc Natl Acad Sci USA 108, 1717-1722.
[22] Ghillebert R, Swinnen E, Wen J, Vandesteene L, Ramon M, Norga K, Rolland F, Winderickx J (2011). The AMP- K/SNF1/SnRK1 fuel gauge and energy regulator: structure, function and regulation. FEBS J 278, 3978-3990.
[23] Halford NG, Hardie DG (1998). SNF1-related protein kinases: global regulators of carbon metabolism in plants.Plant Mol Biol 37, 735-748.
[24] Halford NG, Hey SJ (2009). Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signaling in plants.Biochem J 419, 247-259.
[25] Halford NG, Hey SJ, Jhurreea D, Laurie S, McKibbin RS, Zhang Y, Paul MJ (2004). Highly conserved protein kinases involved in the regulation of carbon and amino acid metabolism.J Exp Bot 55, 35-42.
[26] Hashimoto K, Eckert C, Anschütz U, Scholz M, Held K, Waadt R, Reyer A, Hippler M, Becker D, Kudla J (2012). Phosphorylation of calcineurin B-like (CBL) calcium sensor proteins by their CBL-interacting protein kinases (CIPKs) is required for full activity of CBL-CIPK complexes toward their target proteins.J Biol Chem 287, 7956-7968.
[27] Hirayama T, Umezawa T (2010). The PP2C-SnRK2 complex: the central regulator of an abscisic acid signaling pathway.Plant Signal Behave 5, 160-163.
[28] Hu HC, Wang YY, Tsay YF (2009). AtCIPK8, a CBL-inter- acting protein kinase, regulates the low-affinity phase of the primary nitrate response.Plant J 57, 264-278.
[29] Huang C, Ding S, Zhang H, Du H, An L (2011). CIPK7 is involved in cold response by interacting with CBL1 inArabidopsis thaliana. Plant Sci 181, 57-64.
[30] Jeong EY, Seo PJ, Woo JC, Park CM (2015). AKIN10 delays flowering by inactivating IDD8 transcription factor through protein phosphorylation in Arabidopsis.BMC Plant Biol 15, 110.
[31] Jones JDG, Dangl JL (2006). "The plant immune system".Nature 444, 323-329.
[32] Kanwar P, Sanyal SK, Tokas I, Yadav AK, Pandey A, Kapoor S, Pandey GK (2014). Comprehensive structural, interaction and expression analysis of CBL and CIPK complement during abiotic stresses and development in rice.Cell Calcium 56, 81-95.
[33] Kim CY, Vo KTX, An G, Jeon JS (2015). A rice sucrose non-fermenting-1 related protein kinase 1, OSK35, plays an important role in fungal and bacterial disease resistance.J Korean Soc Appl Bi 58, 669-675.
[34] Kim KN, Cheong YH, Grant JJ, Pandey GK, Luan S (2003). CIPK3, a calcium sensor-associated protein kin- ase that regulates abscisic acid and cold signal transduction in Arabidopsis.Plant Cell 15, 411-423.
[35] Kim MJ, Park MJ, Seo PJ, Song JS, Kim HJ, Park CM (2012). Controlled nuclear import of the transcription factor NTL6 reveals a cytoplasmic role of SnRK2.8 in the drought-stress response.Biochem J 448, 353-363.
[36] Kimura S, Kawarazaki T, Nibori H, Michikawa M, Imai A, Kaya H, Kuchitsu K (2013). The CBL-interacting protein kinase CIPK26 is a novel interactor of Arabidopsis NADPH oxidase AtRbohF that negatively modulates its ROS-producing activity in a heterologous expression sys- tem.J Biochem 153, 191-195.
[37] Kleist TJ, Spencley AL, Luan S (2014). Comparative phylogenomics of the CBL-CIPK calcium-decoding network in the moss Physcomitrella, Arabidopsis, and other green lineages. Front Plant Sci 5, 187-207.
[38] Lan WZ, Lee SC, Che YF, Jiang YQ, Luan S (2011). Mechanistic analysis of AKT1 regulation by the CBL- CIPK-PP2CA interactions.Mol Plant 4, 527-536.
[39] Lawlor DW, Paul MJ (2014). Source/sink interactions underpin crop yield: the case for trehalose 6-phosphate/ SnRK1 in improvement of wheat.Front Plant Sci 5, 418-432.
[40] Lee HJ, Park YJ, Seo PJ, Kim JH, Sim HJ, Kim SG, Park CM (2015). Systemic immunity requires SnRK2.8-ned- iated nuclear import of NPR1 in Arabidopsis.Plant Cell 27, 3425-3438.
[41] Liang S, Lu K, Wu Z, Jiang SC, Yu YT, Bi C, Zhang DP (2015). A link between magnesium-chelatase H subunit and sucrose nonfermenting 1 (SNF1)-related protein kinase SnRK2.6/OST1 in Arabidopsis guard cell signaling in response to abscisic acid.J Exp Bot 66, 6355-6369.
[42] Lin H, Du W, Yang Y, Schumaker KS, Guo Y (2014). A calcium-independent activation of the Arabidopsis SOS2- like protein kinase24 by its interacting SOS3-like calcium binding protein1.Plant Physiol 164, 2197-2206.
[43] Mair A, Pedrotti L, Wurzinger B, Anrather D, Simeunovic A, Weiste C, Valerio C, Dietrich K, Kirchler T, Nägele T (2015). SnRK1-triggered switch of bZIP63 dimerization mediates the low-energy response in plants.eLife 4, e05828.
[44] McLoughlin F, Galvan-Ampudia CS, Julkowska MM, Caarls L, van der Does D, Laurière C, Munnik T, Haring MA, Testerink C (2012). The Snf1-related protein kinases SnRK2.4 and SnRK2.10 are involved in maintenance of root system architecture during salt stress.Plant J 72, 436-449.
[45] Meena MK, Sanjay G, Vikas D, Ansuman R, Debasis C (2015). Expression of chickpea CIPK25 enhances root growth and tolerance to dehydration and salt stress in transgenic tobacco.Front Plant Sci 6, 683.
[46] Mogami J, Fujita Y, Yoshida T, Tsukiori Y, Nakagami H, Nomura Y, Fujiwara T, Nishida S, Yanagisawa S, Takahashi F (2015). Two distinct families of protein kinases are required for plant growth under high external Mg2+ concentrations in Arabidopsis.Plant Physiol 167, 1039-1057.
[47] Mohannath G, Jackel JN, Lee YH, Buchmann RC, Wang H, Patil V, Adams AK, Bisaro DM (2014). A complex containing SNF1-related kinase (SnRK1) and adenosine kinase in Arabidopsis.PLoS One 9, e87592.
[48] Nägele T, Weckwerth W (2014). Mathematical modeling reveals that metabolic feedback regulation of SnRK1 and hexokinase is sufficient to control sugar homeostasis from energy depletion to full recovery.Front Plant Sci 5, 365-376.
[49] Nunes C, Primavesi LF, Patel MK, Martinez-Barajas E, Powers SJ, Saga R, Fevereiro PS, Davis BG, Paul MJ (2013). Inhibition of SnRK1 by metabolites: tissuedepen- dent effects and cooperative inhibition by glucose 1- phosphate in combination with trehalose 6-phosphate.Plant Physiol Biochem 63, 89-98.
[50] O’Brien M, Kaplan-Levy RN, Quon T, Sappl PG, Smyth DR (2015). PETAL LOSS, a trihelix transcription factor that represses growth in Arabidopsis thaliana, binds the energy-sensing SnRK1 kinase AKIN10. J Exp Bot 66, 2475-2485.
[51] Ohta M, Guo Y, Halfter U, Zhu JK (2003). A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2.Proc Natl Acad Sci USA 100, 11771-11776.
[52] Pandey GK, Kanwar P, Singh A, Steinhorst L, Pandey A, Yadav AK, Cheong YH (2015). Calcineurin B-like protein-interacting protein kinase CIPK21 regulates osmotic and salt stress responses in Arabidopsis.Plant Physiol 169, 780-792.
[53] Park HJ, Kim WY, Yun DJ (2013). A role for GIGANTEA: keeping the balance between flowering and salinity stress tolerance.Plant Signal Behav 8, e24820.
[54] Perochon A, Jianguang J, Kahla A, Arunachalam C, Scofield SR, Bowden S, Wallington E, Doohan FM (2015). TaFROG encodes a Pooideae orphan protein that interacts with SnRK1 and enhances resistance to the mycotoxigenic fungus Fusarium graminearum. Plant Phy- siol 169, 2895-2906.
[55] Polge C, Thomas M (2007). SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control.Trends Plant Sci 12, 20-28.
[56] Ramon M, Ruelens P, Li Y, Sheen J, Geuten K, Rolland F (2013). The hybrid Four-CBS-Domain KINβγ subunit functions as the canonical γ subunit of the plant energy sensor SnRK1. Plant J 75, 11-25.
[57] Rodrigues A, Adamo M, Crozet P, Margalha L, Confraria A, Martinho C, Elias A, Rabissi A, Lumbreras V, González GM (2013). ABI1 and PP2CA phosphatases are negative regulators of Snf1-related protein kinase1 signaling in Arabidopsis.Plant Cell 25, 3871-3884.
[58] Saha J, Chatterjee C, Sengupta A, Gupta K, Gupta B (2014). Genome-wide analysis and evolutionary study of sucrose non-fermenting 1-related protein kinase 2 (Sn- RK2) gene family members in Arabidopsis andOryza. Comput Biol Chem 49, 59-70.
[59] Sanyal SK, Pandey A, Pandey GK (2015). The CBL-CIPK signaling module in plants: a mechanistic perspective.Physiol Plant 155, 89-108.
[60] Schuck S, Baldwin IT, Bonaventure G (2013). HSPRO acts via SnRK1-mediated signaling in the regulation of Nicotiana attenuata seedling growth promoted by Pirifor- mospora indica. Plant Signali Behav 8, e23537.
[61] Shen W, Dallas MB, Goshe MB, Hanley BL (2014). SnRK1 phosphorylation of AL2 delays cabbage leaf curl virus infection in Arabidopsis.J Virol 88, 10598-10612.
[62] Son S, Oh CJ, An CS (2014). Arabidopsis thaliana remorins interact with SnRK1 and play a role in susceptibility to beet curly top virus and beet severe curly top virus.Plant Pathol J 30, 269-278.
[63] Song X, Ohtani M, Hori C, Takebayasi A, Hiroyama R, Rejab NA, Suzuki T, Demura T, Yin T (2015). Physical interaction between SnRK2 and PP2C is conserved in Populus trichocarpa. Plant Biotech 32, 337-341.
[64] Steinhorst L, Mähs A, Ischebeck T, Zhang C, Zhang X, Arendt S, Schültke S, Heilmann I, Kudla J (2015). Vacuolar CBL-CIPK12 Ca2+ sensor-kinase complexes are required for polarized pollen tube growth.Curr Biol 25, 1475-1482.
[65] Tang RJ, Zhao FG, Garcia VJ, Kleist TJ, Yang L, Zhang HX, Luan S (2015). Tonoplast CBL-CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis.Proc Natl Acad Sci USA 112, 3134-3139.
[66] Thoday-Kennedy EL, Jacobs AK, Roy SJ (2015). The role of the CBL-CIPK calcium signaling network in regulating ion transport in response to abiotic stress.Plant Growth Regul 76, 3-12.
[67] Tian S, Mao X, Zhang H, Chen S, Zhai C, Yang S, Jing R (2013). Cloning and characterization of TaSnRK2.3, a novel SnRK2 gene in common wheat. J Exp Bot 64, 2063-2080.
[68] Torre F, Gutiérrez-Beltrán E, Pareja-Jaime Y, Chakravar- thy S, Martin GB, Pozo O (2013). The tomato calcium sensor Cbl10 and its interacting protein kinase Cipk6 define a signaling pathway in plant immunity.Plant Cell 25, 2748-2764.
[69] Vlot AC, Dempsey DMA, Klessig DF (2009). Salicylic acid, a multifaceted hormone to combat disease.Annu Rev Phytopathol 47, 177-206.
[70] Wang L, Hu W, Sun J, Liang X, Yang X, Wei S, Wang X, Zhou Y, Xiao Q, Yang G (2015a). Genome-wide analysis of SnRK gene family in Brachypodium distachyon and functional characterization of BdSnRK2.9. Plant Sci 237, 33-45.
[71] Wang P, Xue L, Batelli G, Lee S, Hou YJ, Van OMJ, Zhang H, Tao WA, Zhu JK (2013). Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action.Proc Natl Acad Sci USA 110, 11205-11210.
[72] Wang P, Zhu JK, Lang Z (2015b). Nitric oxide suppresses the inhibitory effect of abscisic acid on seed germination by S-nitrosylation of SnRK2 proteins. Plant Signal Behav 10, e1031939.
[73] Wang XP, Chen LM, Liu WX, Shen L, Wang FL, Zhou Y, Zhang Z, Wu WH, Wang Y (2016). AtKC1 and CIPK23 synergistically modulate AKT1-mediated low potassium stress responses in Arabidopsis.Plant Physiol 170, 1493-1508.
[74] Xie C, Zhou X, Deng X, Guo Y (2010). PKS5, a SNF1- related kinase, interacts with and phosphorylates NPR1, and modulates expression of WRKY38 and WRKY62.J Genet Genomics 37, 359-369.
[75] Xuan MA, Xin MB, Feng CX (2015). New players in ABA signaling: identification of PUB12/13 involved in degradation of ABA co-receptor ABI1.Sci China Life Sci 58, 1173-1174.
[76] Yan J, Niu F, Liu WZ, Zhang H, Wang B, Yang B, Jiang YQ (2014). Arabidopsis CIPK14 positively regulates glucose response.Biochem Biophys Res Commun 450, 1679-1683.
[77] Yan S, Dong X (2014). Perception of the plant immune signal salicylic acid.Curr Opin Plant Biol 20, 64-68.
[78] Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K (2006). The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis.J Biol Chem 281, 5310-5318.
[79] Yoshida T, Fujita Y, Maruyama K, Mogami J, Todaka D, Shinozaki K, Yamaaguchi SK (2015). Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abs- cise acid signaling in response to osmotic stress.Plant Cell Environ 38, 35-49.
[80] Yoshida T, Nishimura N, Kitahata N, Kuromori T, Ito T, Asami T, Shinozaki K, Hirayama T (2006). ABA-Hypersensitive Germination3 encodes a protein phospha- tase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs.Plant Physiol 140, 115-126.
[81] Zhou L, Lan W, Chen B, Fang W, Luan S (2015a). A calcium sensor-regulated protein kinase, calcineurin B-like protein-interacting protein kinase19, is required for pollen tube growth and polarity.Plant Physiol 167, 1351-1360.
[82] Zhou X, Hao H, Zhang Y, Bai Y, Zhu W, Qin Y, Yuan F, Zhao F, Wang M, Hu J (2015b). SOS2-like protein kinase5, an snf1-related protein kinase3-type protein kin- ase, is important for abscisic acid responses in Arabidopsis through phosphorylation of abscisic acid-insensitive.Plant Physiol 168, 659-676.
[83] Zulawski M, Braginets R, Schulze WX (2013). PhosPhAt goes kinases-searchable protein kinase target information in the plant phosphorylation site database PhosPhAt.Nucleic Acids Res 41, D1176-D1184.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Fusuo Zhang Zhenling Cui Jiqing Wang Chunjian Li Xinping Chen . Current status of soil and plant nutrient management in China and improvement strategies.[J]. Chin Bull Bot, 2007, 24(06): 687 -694 .
[2] Xu Xinrong and Shao Huaying. The Scanning Electron Microscopic Observation of Pollen Grains of two Species of Pharbitis[J]. Chin Bull Bot, 1983, 1(02): 54 .
[3] Guoqi Song, Xingjun Wang, Aiqin Li, Changsheng Li. Research Progress in Suspensor of Angiosperms[J]. Chin Bull Bot, 2012, 47(2): 188 -195 .
[4] Manlan Zhu, Liangsheng Wang, Huijin Zhang, Yanjun Xu, Xuchen Zheng, Lijin Wang. Relationship Between the Composition of Anthocyanins and Flower Color Variation in Hardy Water Lily (Nymphaea spp.) Cultivars[J]. Chin Bull Bot, 2012, 47(5): 437 -453 .
[5] Mao Xue-wen. A Problem Worth to Discuss - Asexual Reproduction and Vegetative Propagation of Plant[J]. Chin Bull Bot, 1992, 9(04): 56 -58 .
[6] WU Hui, DAI Hai-Fang, ZHANG Ju-Song, JIAO Xiao-Ling, LIU Cui, SHI Jun-Yi, FAN Zhi-Chao, and ALIYAN?Rouzi. Responses of photosynthetic characteristics to low temperature stress and recovery treatment in cotton seedling leaves[J]. Chin J Plan Ecolo, 2014, 38(10): 1124 -1134 .
[7] MA Yu-E, XIANG Wen-Hua, LEI Pi-Feng. STEM RESPIRATION AND ITS CONTROLLING FACTORS IN FOREST ECOSYSTEMS[J]. Chin J Plan Ecolo, 2007, 31(3): 403 -412 .
[8] WU Yun-Na, LI Zheng-Hai. Changing of Landscape Diversity with Time in Xilinguole Steppe[J]. Chin J Plan Ecolo, 2000, 24(1): 58 -63 .
[9] Wang Renzhong. Density-Dependence of Calamagrostis epigejos in Songnen Grassland[J]. Chin J Plan Ecolo, 1998, 22(1): 85 -89 .
[10] ZHANG Liang, XING Fu, YU Li-Li, XU Kun, SUN Zhong-Lin, Lü Xian-Guo. PLANT SPECIES DIVERSITY OF THE ISLAND FOREST IN A MARSH IN THE SANJIANG PLAIN, CHINA[J]. Chin J Plan Ecolo, 2008, 32(3): 582 -590 .