Chin Bull Bot ›› 2016, Vol. 51 ›› Issue (5): 650-658.doi: 10.11983/CBB16049

Previous Articles     Next Articles

Cones and Seeds Characteristics of Larix chinensis in Qinling Mountains and Their Relationship with Environmental factors

Xiao Guan, Leshan Du, Xiaomeng Zhai, Chunxin Zang, Lile Hu*   

  1. Research Center for Biodiversity, Chinese Research Academy of Environmental Sciences Beijing 100012, China
  • Received:2016-03-15 Accepted:2016-06-27 Online:2016-09-27 Published:2016-09-01
  • Contact: Hu Lile E-mail:hulile@craes.org.cn
  • About author:

    # Co-first authors

Abstract:

Larix chinensis is a timberline tree species in the Qinling Mountains, and its fruiting characteristics (i.e., seed and cone characteristics) can affect migration and also distribution patterns of the timberline. We tested the differentiation between southern and northern slopes in different communities by field investigation of the cones and seeds characteristics of L. chinensis in Qinling Mountains. We then calculated the variations of cones and seeds between slopes and among populations using One-way ANOVA and multiple comparison, and analyzed the resources of difference using coefficient of phenotypic variation and phenotypic differentiation (Vst), and calculated the relationship between the cones and seeds and environmental factors using Pearson correlation and redundancy analysis (RDA). (1) We found no significant change in cones and seeds characteristics between plants in the southern and northern slopes. The northern slope plants featured a significant variation in all cones and seeds characteristics among different populations, whereas in the southern slope, only cone weight and seed number per cone differed among different populations. (2) Phenotype variation and differentiation was larger in the southern than northern slope and the Vsts in both slopes were <0.5, so the cones and seeds characteristics varied mainly within populations. (3) We found a negative correlation between altitude and weight, length, and width of cones. As well, the mean correlation between altitude and fruiting characteristics was maximum (r=-0.475), followed by soil K, slope, pH, soil N, organic matter, soil P and gradient. Redundancy analysis showed that the fruiting characteristics were largely affected by altitude, slope and soil K. These results may be helpful to explain the factors limiting the distribution of L. chinensis, providing theoretical evidence for management and protection.

Figure 1

Sample plots of Larix chinensis"

Table 1

The differentiation of cones and seeds characteristics of Larix chinensis between southern and northern slopes"

Position Weight of cones (g) Length of cones (mm) Width of cones (mm) Number of seeds
North slope 1.140±0.424 a 34.180±6.085 a 19.845±2.389 a 59.101±12.250 a
South slope 1.107±0.509 a 34.370±5.532 a 20.093±2.667 a 58.333±10.198 a

Figure 2

Comparison of cones and seeds characteristics among different types of Larix chinensis population (A) Weight of cones and number of seeds; (B) Length and width of cones. Letters show the result of Duncan’s test in this figure, and different letters among communities show significantly difference (P<0.05)."

Table 2

Phenotypic variation and differentiation of cones and seeds characteristics of Larix chinensis between southern and northern slopes"

Position Weight of cones Length of cones Width of cones Number of seeds Mean value
CV North slope 0.3723 0.1780 0.1204 0.2072 0.2195
South slope 0.4596 0.1610 0.1328 0.1748 0.2321
Vst North slope 0.2743 0.1406 0.1463 0.2033 0.1911
South slope 0.4106 0.4579 0.2467 0.3857 0.3752

Table 3

The relationship between cones and seeds characteristics of Larix chinensis and environmental factors"

Environmental factor Weight of cones Length of cones Width of cones Number of seeds Mean value
Altitude -0.559 * -0.458 * -0.609 ** -0.273 -0.475
Slope 0.029 -0.089 0.092 0.076 0.027
Aspect of slope 0.252 0.267 0.294 0.297 0.278
pH 0.216 0.383 + 0.253 0.256 0.277
Soil organic matter 0.117 0.130 -0.152 0.255 0.088
Soil available N -0.142 -0.160 -0.309 -0.028 -0.160
Soil available P -0.107 0.070 -0.206 0.077 -0.041
Soil available K 0.133 0.310 0.307 0.3740 + 0.281

Table 4

Loadings of the first two axes based on RDA"

Environmental factor Axis 1 (52%) Axis 2 (2.4%)
Altitude 0.4410 -0.5679
Slope -0.0609 -0.3810
Aspect of slope -0.4034 -0.0530
pH -0.3893 0.3162
Soil organic matter -0.3049 -0.4093
Soil available N 0.0851 -0.4036
Soil available P -0.0949 -0.1028
Soil available K -0.4976 -0.1510

Figure 3

The relationship between cones and seeds characteristics of Larix chinensis and environmental factors based on RDA (axis 1 and axis 2)"

1 段仁燕, 王孝安 (2005). 太白红杉种内和种间竞争研究. 植物生态学报 29, 242-250.
2 葛颂, 洪德元, 钱迎倩, 马克平 (1994). 生物多样性研究的原理与方法. 北京: 中国科学技术出版社. pp. 123-140.
3 葛颂, 王明庥, 陈岳武 (1988). 用同工酶研究马尾松群体的遗传结构. 林业科学 24, 399-409.
4 江源, 杨艳刚, 董满宇, 张文涛, 任斐鹏 (2009). 芦芽山林线白杄与华北落叶松径向生长特征比较. 应用生态学报 20, 1271-1277.
5 康永祥, 刘婧辉, 代拴发, 何晓军 (2011). 太白山不同海拔太白红杉年轮生长对气候变化的响应. 西北农林科技大学学报(自然科学版) 38, 141-147.
6 李斌, 顾万春, 卢宝明 (2002). 白皮松天然群体种实性状表型多样性研究. 生物多样性 10, 181-188.
7 李俊生, 胡理乐, 舒俭民 (2012). 秦岭林线树种太白红杉生态特征及其气候变化的响应. 北京: 科学出版社. pp. 57-72.
8 李明财, 罗天祥, 朱教君, 孔高强 (2008). 高山林线形成机理及植物相关生理生态学特性研究进展. 生态学报 28, 5583-5591.
9 李亮, 何晓军, 胡理乐, 李俊生 (2013). 1958-2008年太白山太白红杉林碳循环模拟. 生态学报 33, 2845-2855.
10 林伟, 胡理乐, 郑博福, 李俊生 (2010). 林线树种太白红杉碳储量估算. 环境科学研究 23, 1470-1474.
11 刘婧辉 (2010). 高山林线树种太白红杉年轮生长对气候变化的响应. 硕士论文. 杨凌: 西北农林科技大学. pp. 25-31.
12 罗建武, 韵晋琦, 朱彦鹏, 刘高慧, 胡理乐 (2015). 太白山太白红杉林数量分类. 西北林学院学报 30(4), 1-7.
13 罗建勋, 顾万春 ( 2005). 云杉天然群体表型多样性研究. 林业科学 41(2), 66-73.
14 毛建丰, 李悦, 刘玉军, 刘灏, 王晓茹 (2007). 高山松种实性状与生殖适应性. 植物生态学报 31, 291-299.
15 任青山, 杨小林, 崔国发, 王景升, 黄瑜, Wei Xiaohua, Li Qinglin (2007). 西藏色季拉山林线冷杉种群结构与动态. 生态学报 7, 2669-2677.
16 孙玉玲, 李庆梅, 杨敬元, 谢宗强 (2005). 秦岭冷杉球果与种子的形态变异. 生态学报 25, 176-181.
17 王孝安, 王志高, 肖娅萍 (2005a). 太白红杉种实数量特征. 植物生态学报 29, 367-372.
18 王孝安, 王志高, 肖娅萍, 段仁燕, 赵相健 (2005b). 秦岭山地太白红杉种群种实性状的生态可塑性研究. 应用生态学报 16, 29-32.
19 王娅丽, 李毅, 陈晓阳 (2008). 祁连山青海云杉天然群体表型性状遗传多样性分析. 林业科学 44(2), 70-77.
20 俞晓敏, 赵桂仿 (2003). 太白红杉小孢子的发生和雄配子体的发育. 植物学报 20, 576-584.
21 张林, 吴彦, 吴宁, 孔璐, 刘琳, 胡红宇 (2010). 林线附近主要植被类型下土壤非生长季磷素形态. 生态学报 30, 3457-3464.
22 张玲 (2004). 林线树种太白红杉种子萌发的生理生态特性. 植物生态学报 28, 579-583.
23 张文辉, 王延平, 康永祥, 刘祥君 (2005). 太白山太白红杉种群空间分布格局研究. 应用生态学报 16, 207-212.
24 赵志刚, 郭俊杰, 沙二, 林开勤, 曾杰, 徐建民 (2009). 我国格木的地理分布与种实表型变异. 植物学报 44, 338-344.
25 周永斌, 吴栋栋, 于大炮 (2010). 长白山岳桦体内碳素供应状况. 林业科学 46(3), 161-165.
26 竺利波, 顾万春, 李斌 (2007). 紫荆群体表型性状多样性研究. 中国农学通报 23, 138-145.
27 Davis MB, Shaw RG (2001). Range shifts and adaptive responses to Quaternary climate change.Science 292, 673-679.
28 Duan RY, Huang MY, Wang XA (2014). The distribution pattern of different patch types and heterogeneity of the light and temperature: Larix chinensis Beissn in Qinling Mountains (China).Russ J Ecol 45, 209-214.
29 Duan RY, Wang XA, Tu YB, Huang MY, Wang C, Zhu ZH, Guo H (2009). Recruitment pattern of tree populations along an altitudinal gradient: Larix chinensis Beissn in Qinling Mountains (China).Polish J Ecol 57, 451-459.
30 Harper JL, Lovell PH, Moore KG (1970). The shapes and sizes of seeds.Ann Rev Ecol Syst 1, 327-356.
31 Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009). Are treelines advancing? A global meta-analysis of treeline response to climate warming.Ecol Lett 12, 1040-1049.
32 Li MH, Xiao WF, Shi P, Wang SG, Zhong YD, Liu XL, Wang XD, Cai XH, Shi ZM (2008a). Nitrogen and carbon source-sink relationships in trees at the Himalayan treelines compared with lower elevations.Plant Cell Environ 31, 1377-1387.
33 Li MH, Xiao WF, Wang SG, Cheng GW, Cherubini P, Cai XH, Liu XL, Wang XD, Zhu WZ (2008b). Mobile carbohydrates in Himalayan treeline trees I. Evidence for carbon gain limitation but not for growth limitation.Tree Phy- siol 28, 1287-1296.
34 Shi P, Koerner C, Hoch G (2008). A test of the growth- limitation theory for alpine tree line formation in evergreen and deciduous taxa of the Eastern Himalayas.Funct Ecol 22, 213-220.
35 Westoby M, Jurado E, Leishman M (1992). Comparative evolutionary ecology of seed size.Trend Ecol Evol 7, 368-372.
36 Zhang L, Wu Y, Wu N, Kong L, Liu L, Hu HY (2010). The soil phosphorus forms under different vegetation types near timberline during non-growing season.Acta Ecol Sin 21, 3457-3464.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Chin Bull Bot, 1999, 16(04): 477 -480 .
[2] . [J]. Chin Bull Bot, 1996, 13(专辑): 78 .
[3] SONG Song-Quan and FU Jia-Rui. Role of Maturation Drying in Seed Development and Germination[J]. Chin Bull Bot, 1998, 15(02): 23 -32 .
[4] . [J]. Chin Bull Bot, 1994, 11(专辑): 83 .
[5] . [J]. Chin Bull Bot, 2001, 18(04): 511 .
[6] William Tang. Pollination techique of Cycads[J]. Chin Bull Bot, 1995, 12(专辑): 71 -73 .
[7] Li Rengui and Guan He. Plantlets Induced from Explants of Cauliflower[J]. Chin Bull Bot, 1984, 2(01): 42 -44 .
[8] ZHANG Cai-Xi LI Zai-Long CHEN Da-Ming. Dynamic of Several Isozymes of Malus hupenhensis in Phase Change[J]. Chin Bull Bot, 2001, 18(01): 100 -104 .
[9] LI Bo;CHEN Jia-Kuan and Andrew R. Watkinson. A Literature Review on Plant Competition[J]. Chin Bull Bot, 1998, 15(04): 18 -29 .
[10] Wang Yi-xiu;Nie Xiu-wan and Zheng Guo-chang. Effect of Cytocholasin B on the Intercellularly Migrating Chromatin Substance in the Pollen Mother Cells[J]. Chin Bull Bot, 1984, 2(04): 39 -41 .