Chinese Bulletin of Botany ›› 2016, Vol. 51 ›› Issue (6): 863-871.doi: 10.11983/CBB15161

Previous Articles     Next Articles

Advances in Research of Seed Physical Dormancy

Tingting Xue1, Yongbao Shen1,2*, Jia Liu1, Fenghou Shi1,2   

  1. 1College of Forestry, Nanjing Forestry University, Nanjing 210037, China
    2Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Southern Tree Seed Inspection Center National Forestry Administration, Nanjing 210037, China
  • Received:2015-09-11 Accepted:2016-05-09 Online:2016-12-02 Published:2016-11-01
  • Contact: Shen Yongbao E-mail:277385220@qq.com
  • About author:

    # Co-first authors

Abstract:

Seed physical dormancy is a special type of dormancy caused by an impermeable seed coat or pericarp. It is an adaptation to environmental changes that plants acquire during long-term phylogenesis. This article introduces the concept and definition of physical dormancy and summarizes the morphological structure of physically dormant seed, which includes a water-impermeable layer of seed coat, water-gap complex and the embryo. It also summarizes the release of seed physically dormant and the mechanisms involved in the formation of openings in the seed coat. It describes the phylogenetic relationships of physically dormant seed. It also put forword the probable research point on seed physically dormant in the future.

Figure 1

Testa structure of Melilotus albus seeds (Hamley, 1932)"

Figure 2

The structure of plug-like water-gap complex of Bixa orellana seeds (Nandi, 1998)(A) The arrow points to the place of the plug-like water-gap complex; (B) The scanning electron micrographs of the plug-like water-gap complex; (C) The section sketch map of the plug-like water-gap complex"

Figure 3

Summary of general trends in angiosperm seed evolution with respect to seed type and dormancy class (Finch- Savage and Leubner-Metzger, 2006)MD: Morphological dormancy; MPD: Morphological and physiological dormancy; ND: Non dormancy; PD: Physiological dormancy; PY: Physical dormancy; B1-B4: 4 subtypes of basal seed type; P: Pheripheral seed type; LA: Linear axile seed type; MA: Miniature axile seed type; FA1-FA4: 4 subtypes of foliate axile seed type. The white part is the endosperm, and the black part is the embryo."

[1] 曹珊珊 (2009). 黄山花楸种子休眠特性研究. 博士论文. 南京: 南京林业大学. pp. 47.
[2] Barton LV (1934). Dormancy in Tilia seeds.Contrib Boyce Thompson Inst 6, 69-89.
[3] Baskin CC, Baskin JM (2014). Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. Vol. 6. San Diego: Academic Press. pp. 150-162.
[4] Baskin JM, Baskin CC (1974). Some ecophysiological aspects of seed dormancy in Geranium carolinianum L. from central Tennessee.Oecologia 16, 209-219.
[5] Baskin JM, Baskin CC (2000). Taxonomy, anatomy and evolution of physical dormancy in seeds.Plant Spec Biol 15, 139-152.
[6] Baskin JM, Baskin CC (2004). A classification system for seed dormancy.Seed Sci Res 14, 1-16.
[7] Bhattacharya A, Saha PK (1990). Ultrastructure of seed coat and water uptake pattern of seeds during germination in Cassia sp.Seed Sci Technol 18, 97-103.
[8] Boesewinkel FD, Bouman F (1995). The seed: structure and function. In: Kigel J, Galili G, eds. Seed Development and Germination. New York: Marcel Dekker. pp. 1-24.
[9] Christiansen MN, Moore RP (1959). Seed coat structural differences that influence water uptake and seed quality in hard seed cotton.Agron 51, 582-584.
[10] Corbineau F, Kanté M, Côme D (1986). Seed germination and seedling development in the mango (Mangifera indica L.).Tree Physiol 1, 151-160.
[11] Crocker W (1916). Mechanics of dormancy in seeds.Am J Bot 3, 99-120.
[12] Cronquist A (1988). The Evolution and Classification of Flowering Plants. New York: The New York Botanical Garden. pp. 364-366.
[13] Egley GH (1986). Stimulation of weed seed gemination in soil.Rev Weed Sci 2, 67-89.
[14] Esashi Y, Leopold AC (1968). Physical forces in dormancy and germination of Xanthium seeds.Plant Physiol 43, 871-876.
[15] Finch-Savage WE, Leubner-Metzger G (2006). Seed dor- mancy and the control of germination. Plant Sci 171, 501-523.
[16] Gama-Arachchige NS, Baskin JM, Geneve RL, Baskin CC (2011). Acquisition of physical dormancy and ontogeny of the micropyle-water-gap complex in developing seeds of Geranium carolinianum (Geraniaceae).Ann Bot 108, 51-64.
[17] Gama-Arachchige NS, Baskin JM, Geneve RL, Baskin CC (2013). Identification and characterization of ten new water gaps in seeds and fruits with physical dormancy and classification of water-gap complexes.Ann Bot 112, 69-84.
[18] Geneve RL (1991). Seed dormancy in eastern redbud (Cercis canadensis).Am Soc Hort Sci 116, 85-88.
[19] Gong Z, Bassel GW, Wang A, Greenwood JS, Bewley JD (2005). The emergence of embryos from hard seeds is related to the structure of the cell walls of the micropylar endosperm, and not to endo-β-mannanase activity.Ann Bot 96, 1165-1173.
[20] Hamley DH (1932). Softening the seeds of Melilotus alba.Bot Gaz 93, 345-375.
[21] Hanna PJ (1984). Anatomical features of the seed coat of Acacia kempeana (Mueller) which relate to increased germination rate induced by heat treatment.New Phytol 96, 23-29.
[22] Jayasuriya KMGG, Baskin JM, Baskin CC (2008a). Cycling of sensitivity to physical dormancy-break in seeds of Ipomoea lacunosa (Convolvulaceae) and ecological significance.Ann Bot 101, 341-352.
[23] Jayasuriya KMGG, Baskin JM, Baskin CC (2008b). Dormancy, germination requirements and storage behavior of seeds of Convolvulaceae (Solanales) and evolutionary considerations.Seed Sci Res 18, 223-237.
[24] Jayasuriya KMGG, Baskin JM, Baskin CC (2009). A proposed mechanism for physical dormancy break in seeds of Ipomoea lacunosa (Convolvulaceae).J List 103, 433-445.
[25] Jayasuriya KMGG, Baskin JM, Geneve RL, Baskin CC (2007). Morphology and anatomy of physical dormancy in Ipomoea lacunosa: identification of the water gap in seeds of Convolvulaceae (Solanales).Ann Bot 100, 13-22.
[26] Jayasuriya KMGG, Baskin JM, Geneve RL, Baskin CC, Chien CT (2008c). Physical dormancy in seeds of the holoparasitic angiosperm Cuscuta australis (Convolvu- laceae, Cuscuteae): dormancy-breaking requirements, ana- tomy of the water gap and sensitivity cycling.Ann Bot 102, 39-48.
[27] Jones RO, Geneve RL (1995). Seed coat structure related to germination in eastern redbud (Cercis canadensis L.).Am Soc Hort Sci 120, 123-127.
[28] Koller D, Cohen D (1959). Germination-regulating mechanisms in some desert seeds. VI. Convolvulus lanatus Vahl., Convolvulus negevensis Zoh. and Convolvulus sec- undus Desr.Bull Res Council Israel 70, 175-180.
[29] Kumar P, Singh D (1991). Development and structure of seed coat in Malva L.Phytomorphology 41, 147-153.
[30] Li X, Baskin JM, Baskin CC (1999a). Seed morphology and physical dormancy of several North American Rhus species (Anacardiaceae).Seed Sci Res 9, 247-258.
[31] Li X, Baskin JM, Baskin CC (1999b). Comparative morphology and physiology of fruit and seed development in the two shrubs Rhus aromatica and R. glabra (Anacardiaceae).Am J Bot 86, 1217-1225.
[32] Magallon S, Crane PR, Herendeen PS (1999). Phylogenetic pattern, diversity, and diversification of eudicots.Ann Miss Bot Gard 86, 297-372.
[33] Manchester SR (1994). Inflorescence bracts of fossil and extant Tilia in North America, Europe, and Asia: patterns of morphological divergence and biogeographic history.Am J Bot 81, 1176-1185.
[34] Martin AC (1946). The comparative internal morphology of seeds.Am Midl Nat 36, 513-660.
[35] Meisert A (2002). Physical dormancy in Geraniaceae seeds.Seed Sci Res 12, 121-128.
[36] Morrison DA, Auld TD, Rish S, Porter C, McClay K (1992). Patterns of testa-imposed seed dormancy in native Australian legumes.Ann Bot 70, 157-163.
[37] Morrison DA, McClay K, Porter C, Rish S (1998). The role of the lens in controlling heat-induced breakdown of testa- imposed dormancy in native Australian legumes.Ann Bot 82, 35-40.
[38] Nandi OL (1998). Ovule and seed anatomy of Cistaceae and related Malvanae.Plant Syst Evol 209, 239-264.
[39] Nikolaeva MC (1967). Physiology of deep dormancy in seeds. Leningrad, Russia, Izdatel’stvo Nauka (Translated from Russian by Z. Shapiro (1969)). Washington, DC: National Science Foundation. pp. 219.
[40] Olmez Z, Yahyaoglu Z, Temel F, Gokturk A (2008). Effects of some pretreatments on germination of bladder-senna (Colutea armena Boiss. and Huet.) and smoke-tree (Cotinus coggygria Scop.) seeds.Environ Biol 29, 319-323.
[41] Owens SA, Fields PF, Ewers FW (1998). Degradation of the upper pulvinus in modern and fossil leaves of Cercis (Fabaceae).Am J Bot 85, 273-284.
[42] Pienaar ME, Von Teichman I (1998). The generic position of Lithraea brasiliensis Marchand (Anacardiaceae): evidence from fruit and seed structure.Bot J Linn Soc 126, 327-337.
[43] Prothero DR (1994). The Eocene-Oligocene Transition: Pa- radise Lost. New York: Columbia University Press. pp. 291.
[44] Rafaella CR, Denise MTO, Fernando AOS (2015). A new seed coat water-impermeability mechanism in Chaetos- toma armatum (Melastomataceae): evolutionary and bio- geographical implications of physiophysical dormancy.Seed Sci Res 25, 194-202.
[45] Rolston MP (1978). Water impermeable seed dormancy.Bot Rev 44, 365-396.
[46] Sahai K, Pal A (1995). Studies on seed treatments and histochemical characters of water barrier in seed coat of Leucaena glauca (L.) Benth.Phytol Res 8, 97-100.
[47] Shaw MF (1929). A microchemical study of the fruit coat of Nelumbolutea.Am J Bot 16, 259-276.
[48] Taylor DW (1990). Paleobiogeographic relationships of ang- iosperms from the Cretaceous and early Tertiary of the North American area.Bot Rev 56, 279-417.
[49] Taylor GB (1981). Effect of constant temperature treatments followed by fluctuating temperatures on the softening of hard seeds of Trifolium subterraneum L.Aus J Plant Phy- siol 8, 547-558.
[50] Taylor GB (2005). Hardseededness in Mediterranean annual pasture legumes in Australia: a review.Aus J Agric Res 56, 645-661.
[51] Taylor GB, Revell CK (1999). Effect of pod burial, light, and temperature on seed softening in yellow serradella.Aus J Agric Res 50, 1203-1209.
[52] The Angiosperm Phylogeny Group (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG-III.Bot Linn Soc 161, 105-121.
[53] Valdovinos-Ponce G, Ponce-Salazar RM, Marquez-Guz- man J (1994). Histoquimica del desarrollo de la testa de Ipomoea aquatica Forsk. (Convolvulaceae) en relacion con la permeabilidad al agua. Phyton (Buenos Aires) 55, 107-114.
[54] Van Assche JA, Vandelook FEA (2006). Germination ecology of eleven species of Geraniaceae and Malvaceae, with special reference to the effects of drying seeds.Seed Sci Res 16, 283-290.
[55] Von Teichman I, Robbertse PJ (1986). Development and structure of the pericarp and seed of Rhus lancea L. fil. (Anacardiaceae), with taxonomic notes.Bot J Linn Soc 93, 291-306.
[56] Von Teichman I, Robbertse PJ, Schoonraad E (1988). The structure of the seed of Mangifera indica L. and notes on seed characters of the tribe Mangifereae (Anacardiaceae).South African J Bot 54, 472-476.
[57] von Teichman I, van Wyk AE (1991). Taxonomic position of Rhus problematodes (Anacardiaceae): evidence from fruit and seed structure.S Afr Bot 57, 29-33.
[58] Wannan BS, Quinn CJ (1990). Pericarp structure and generic affinities in Anacardiaceae.Bot J Linn Soc 102, 225-252.
[59] Werker E (1997). Seed Anatomy.Berlin: Gebruder Borntra- eger. pp. 424.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Chinese Bulletin of Botany, 1994, 11(专辑): 19 .
[2] Xiao Xiao and Cheng Zhen-qi. Chloroplast 4.5 S ribosomol DNA. II Gene and Origin[J]. Chinese Bulletin of Botany, 1985, 3(06): 7 -9 .
[3] CAO Cui-LingLI Sheng-Xiu. Effect of Nitrogen Level on the Photosynthetic Rate, NR Activity and the Contents of Nucleic Acid of Wheat Leaf in the Stage of Reproduction[J]. Chinese Bulletin of Botany, 2003, 20(03): 319 -324 .
[4] SONG Li-Ying TAN Zheng GAO Feng DENG Shu-Yan. Advances in in vitro Culture of Cucurbitaceae in China[J]. Chinese Bulletin of Botany, 2004, 21(03): 360 -366 .
[5] . [J]. Chinese Bulletin of Botany, 1994, 11(专辑): 76 .
[6] LI Jun-De YANG Jian WANG Yu-Fei. Aquatic Plants in the Miocene Shanwang Flora[J]. Chinese Bulletin of Botany, 2000, 17(专辑): 261 .
[7] Sun Zhen-xiao Xia Guang-min Chen Hui-min. Karyotype Analysis of Psathyrostachys juncea[J]. Chinese Bulletin of Botany, 1995, 12(01): 56 .
[8] . [J]. Chinese Bulletin of Botany, 1994, 11(专辑): 8 -9 .
[9] Yunpu Zheng;Jiancheng Zhao * ;Bingchang Zhang;Lin Li;Yuanming Zhang . Advances on Ecological Studies of Algae and Mosses in Biological Soil Crust[J]. Chinese Bulletin of Botany, 2009, 44(03): 371 -378 .
[10] Zili Wu, Mengyao Yu, Lu Chen, Jing Wei, Xiaoqin Wang, Yong Hu, Yan Yan, Ping Wan. Transcriptome Analysis of Physcomitrella patens Response to Cadmium Stress by Bayesian Network[J]. Chinese Bulletin of Botany, 2015, 50(2): 171 -179 .