Chin Bull Bot ›› 2016, Vol. 51 ›› Issue (4): 488-495.doi: 10.11983/CBB15136

• EXPERIMENTAL COMMUNICATIONS • Previous Articles     Next Articles

Functional Genes of Panicle Development in Response to Nitrogen Fertilizer in Rice

Chengqiang Ding, Shaohua Wang, Yanfeng Ding*   

  1. College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2015-08-03 Accepted:2015-11-05 Online:2016-08-05 Published:2016-07-01
  • Contact: Ding Yanfeng
  • About author:

    # Co-first authors


Deep-sequencing technologies provide quantitative measures of transcript abundance. We studied the effect of nitrogen fertilizer on genes by deep-sequencing. Many genes were differentially expressed under different levels of nitrogen. The differentially expressed genes were classified into several functional categories including transcriptional regulation, hormone metabolism and signal transduction, metabolism and transportation, stress response, signal transduction (receptor), and protein degradation. Mutant analyses and map-based cloning have revealed many genes controlling the number of spikelets per panicle. Several genes were regulated by nitrogen fertilizer. Some genes regulate panicle development and also plant height, heading date, tiller number, and seed setting rate. Researching the function of these differentially expressed genes will help reveal the molecular mechanisms of nitrogen fertilizer in regulating panicle development in rice.

Table 1

Statistical analysis of differentially expressed genes"

Up-regulation Down-regulation Total
LN vs. LC 1547 1933 3480
PN vs. PC 271 468 739

Table 2

The expression of genes in leaves and young panicle of rice"

Gene Phenotype LC
log2 Ratio
log2 Ratio
D3 Tiller number 15.31 8.43 -0.86 18.01 10.96 -0.72 Zhao et al., 2014
DEP1 Spikelet number per panicle, panicle type 0.01 0.01 0 0.17 0.01 -4.09 Huang et al., 2009; Sun et al., 2014
DEP2/EP2 Panicle type, grain size 1.96 1.08 -0.86 55.17 63.91 0.21 Li et al., 2010a; Zhu et al., 2010
DEP3 Spikelet number per panicle, panicle type 0.01 0.01 0 0.52 0.35 -0.57 Qiao et al., 2011
DLT, D62 Tiller number 0.36 0.01 -5.17 34.72 46.6 0.42 Li et al., 2010c
Ehd2/RID1 Heading time, photoperiod sensitivity 1.42 0.54 -1.39 0.01 0.26 4.7 Matsubara et al., 2008
EUI1 Panicle length, plant height 0.71 0.01 -6.15 - - - Luo et al., 2006
FC1/OsCAD7 Heading time, plant height, grain size 0.01 0.01 0 4.52 6.17 0.45 Li et al., 2009c
FZP/BFL1 Panicle branching 0.01 0.01 0 1.39 0.78 -0.83 Komatsu et al., 2003b
Ghd8/DTH8 Heading time, spikelet num- ber per panicle, plant height 3.92 3.23 -0.28 0.01 0.01 0 Yan et al., 2011
Hd1 Heading time, photoperiod sensitivity 1.78 0.36 -2.31 0.7 0.7 0 Takahashi et al., 2009
Hd17/Ef7 Heading time 17.27 34.44 1 20.01 16 -0.32 Yang et al., 2013
Hd6/CK2α Heading time, photoperiod sensitivity 33.29 47.17 0.5 69 67.38 -0.03 Takahashi et al., 2001
HGW Heading time, grain size 26.35 27.08 0.04 35.85 47.04 0.39 Li et al., 2012
LAX1 Panicle branching, plant height, fertility 0.01 0.01 0 16.1 14.95 -0.11 Komatsu et al., 2003a
LAX2 Panicle branching, tiller number 0.01 0.01 0 0.17 0.01 -4.09 Tabuchi et al., 2011
LP Panicle length, panicle type 1.25 1.97 0.66 29.93 17.48 -0.78 Li et al., 2011b
MIP1 Dwarf/semi-dwarf, tiller number 59.81 67.26 0.17 247.03 115.12 -1.1 Sun et al., 2010
OGR1 Dwarf/semi-dwarf, tiller number, fertility 2.67 4.3 0.69 4.44 3.04 -0.55 Kim et al., 2009
OsAPC6 Panicle length, fertility, grain size, plant height 0.89 1.61 0.86 15.84 19.56 0.3 Awasthi et al., 2012
OsCD1 Spikelet number per panicle, leaf shape, plant height 0.01 0.54 5.75 79.18 115.2 0.54 Luan et al., 2011
OsCKX2/Gn1a Spikelet number per panicle 0.01 0.36 5.17 0.52 1.04 1 Ashikari et al., 2005
OsDof12 Heading time 100.04 56.14 -0.83 17.66 11.22 -0.65 Li et al., 2009a
OsEF3 Heading time, grain size 2.49 0.01 -7.96 2 0.52 -1.94 Fu et al., 2009
OsGRF1 Heading time, plant height 0.01 0.01 0 17.66 8.87 -0.99 Luo et al., 2005
OsGS1;1 Heading time, grain filling, plant height 0.01 0.72 6.17 0.44 0.35 -0.33 Kusano et al., 2011
OsGS2, OsGLN2 Tiller number 482.23 722.61 0.58 28.54 19.65 -0.54 Ishiyama et al., 2004
OsHDT1 Heading time 43.61 10.58 -2.04 393.73 291.71 -0.43 Li et al., 2011a
OsJAG Tiller number, fertility 0.01 0.01 0 4.18 5.56 0.41 Duan et al., 2010
OsLFL1 Heading time 0.01 0.01 0 19.93 11.48 -0.8 Peng et al., 2008
OsMADS15/ DEP Panicle development, fertility 0.01 0.01 0 0.17 0.96 2.5 Wang et al., 2010a
OsMADS50 Heading time 0.71 1.61 1.18 5.74 6.61 0.2 Ryu et al., 2009
Gene Phenotype LC
log2 Ratio
log2 Ratio
OsMADS51 Heading time 42.72 50.94 0.25 201.96 254.06 0.33 Kim et al., 2007
OsMADS56 Heading time 2.49 0.36 -2.79 0.35 0.17 -1.04 Ryu et al., 2009
OsPH1 Heading time, plant height, panicle length 87.76 294.32 1.75 88.58 131.55 0.57 Kovi et al., 2011
OsPht1;8 Fertility, phosphorus content 153.45 734.99 2.26 2.96 3.3 0.16 Jia et al., 2011
OsSPL14 Spikelet number per panicle, tiller number 0.01 0.01 0 376.77 296.49 -0.35 Miura et al., 2010
OsSUT2 Plant height, tiller number, grain size 0.53 0.01 -5.73 0.01 0.01 0 Eom et al., 2011
OsTB1, FC1 Tiller number 0.01 0.01 0 1.48 2.87 0.96 Takeda et al., 2003
OsTEF1 Tiller number 233.02 55.42 -2.07 14.71 8.43 -0.8 Paul et al., 2012
PPS Heading time 8.37 24.93 1.57 13.4 20.61 0.62 Tanaka et al., 2011
RFL/APO2 Heading time, panicle development 0.01 0.01 0 85.1 109.55 0.36 Ikeda-Kawakatsu et al., 2012
SG1 Panicle length, plant height, leaf color and shape, grain size 0.01 0.01 0 47.94 64.51 0.43 Nakagawa et al., 2012
SGL1 Panicle length, plant height, leaf color and shape, grain size 0.01 0.01 0 0.17 0.01 -4.09 Nakagawa et al., 2012
SP1 Panicle length 0.01 1.08 6.75 80.23 81.29 0.02 Li et al., 2009b
TAD1 Tiller number 1.96 0.01 -7.61 2.44 2.09 -0.22 Su'udi et al., 2012
WAF1 Panicle length, leaf shape 0.53 0.36 -0.56 26.36 37.13 0.49 Abe et al., 2010
1 李刚华, 张国发, 陈功磊, 王绍华, 凌启鸿, 丁艳锋 (2009). 超高产常规粳稻宁粳1号和宁粳3号群体特征及对氮的响应. 作物学报 35, 1106-1114.
2 Abe M, Yoshikawa T, Nosaka M, Sakakibara H, Sato Y, Nagato Y, Itoh J (2010). WAVY LEAF1, an ortholog of Arabidopsis HEN1, regulates shoot development by maintaining MicroRNA and trans-acting small interfering RNA accumulation in rice.Plant Physiol 154, 1335-1346.
3 Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005). Cytokinin oxidase regulates rice grain production.Science 309, 741-745.
4 Audic S, Claverie JM (1997). The significance of digital gene expression profiles.Genome Res 7, 986-995.
5 Awasthi A, Paul P, Kumar S, Verma SK, Prasad R, Dhaliwal HS (2012). Abnormal endosperm development causes female sterility in rice insertional mutant OsAPC6.Plant Sci 183, 167-174.
6 Duan Y, Diao Z, Liu H, Cai M, Wang F, Lan T, Wu W (2010). Molecular cloning and functional characterization of OsJAG gene based on a complete-deletion mutant in rice (Oryza sativa L.).Plant Mol Biol 74, 605-615.
7 Eom JS, Cho JI, Reinders A, Lee SW, Yoo Y, Tuan PQ, Choi SB, Bang G, Park YI, Cho MH, Bhoo SH, An G, Hahn TR, Ward JM, Jeon JS (2011). Impaired function of the tonoplast-localized sucrose transporter in rice, OsSUT2, limits the transport of vacuolar reserve sucrose and affects plant growth.Plant Physiol 157, 109-119.
8 Eveland AL, Satoh-Nagasawa N, Goldshmidt A, Meyer S, Beatty M, Sakai H, Ware D, Jackson D (2010). Digital gene expression signatures for maize development.Plant Physiol 154, 1024-1039.
9 Fu C, Yang XO, Chen X, Chen W, Ma Y, Hu J, Li S (2009). OsEF3, a homologous gene of Arabidopsis ELF3, has pleiotropic effects in rice.Plant Biol 11, 751-757.
10 Furukawa T, Sakaguchi N, Shimada H (2006). Two OsGASR genes, rice GAST homologue genes that are abundant in proliferating tissues, show different expression patterns in developing panicles.Genes Genet Syst 81, 171-180.
11 Hao QN, Zhou XA, Sha AH, Wang C, Zhou R, Chen SL (2011). Identification of genes associated with nitrogen- use efficiency by genome-wide transcriptional analysis of two soybean genotypes.BMC Genom 12, 525.
12 Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009). Natural variation at the DEP1 locus enhances grain yield in rice.Nature Gene 41, 494-497.
13 Ikeda-Kawakatsu K, Maekawa M, Izawa T, Itoh J, Nagato Y (2012). ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1.Plant J 69, 168-180.
14 Ishiyama K, Inoue E, Tabuchi M, Yamaya T, Takahashi H (2004). Biochemical background and compartmentalized functions of cytosolic glutamine synthetase for active ammonium assimilation in rice roots.Plant Cell Physiol 45, 1640-1647.
15 Jia H, Ren H, Gu M, Zhao J, Sun S, Zhang X, Chen J, Wu P, Xu G (2011). The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice.Plant Physiol 156, 1164-1175.
16 Kim SL, Lee S, Kim HJ, Nam HG, An G (2007). OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a.Plant Physiol 145, 1484-1494.
17 Kim SR, Yang JI, Moon S, Ryu CH, An K, Kim KM, Yim J, An G (2009). Rice OGR1 encodes a pentatricopeptide repeat-DYW protein and is essential for RNA editing in mitochondria.Plant J 59, 738-749.
18 Komatsu K, Maekawa M, Ujiie S, Satake Y, Furutani I, Okamoto H, Shimamoto K, Kyozuka J (2003a). LAX and SPA: major regulators of shoot branching in rice.Proc Natl Acad Sci USA 100, 11765-11770.
19 Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J (2003b). FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets.Development 130, 3841-3850.
20 Kovi MR, Zhang Y, Yu S, Yang G, Yan W, Xing Y (2011). Candidacy of a chitin-inducible gibberellin-responsive gene for a major locus affecting plant height in rice that is closely linked to green revolution gene sd1.Theor Appl Genet 123, 705-714.
21 Kusano M, Tabuchi M, Fukushima A, Funayama K, Diaz C, Kobayashi M, Hayashi N, Tsuchiya YN, Takahashi H, Kamata A, Yamaya T, Saito K (2011). Metabolomics data reveal a crucial role of cytosolic glutamine synthetase 1;1 in coordinating metabolic balance in rice.Plant J 66, 456-466.
22 Li C, Huang L, Xu C, Zhao Y, Zhou DX (2011a). Altered levels of histone deacetylase OsHDT1 affect differential gene expression patterns in hybrid rice.PLoS One 6, e21789.
23 Li D, Yang C, Li X, Gan Q, Zhao X, Zhu L (2009a). Functional characterization of rice OsDof12.Planta 229, 1159-1169.
24 Li F, Liu W, Tang J, Chen J, Tong H, Hu B, Li C, Fang J, Chen M, Chu C (2010a). Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation.Cell Res 20, 838-849.
25 Li J, Chu H, Zhang Y, Mou T, Wu C, Zhang Q, Xu J (2012). The rice HGW gene encodes a ubiquitin-associated (UBA) domain protein that regulates heading date and grain weight.PLoS One 7, e34231.
26 Li M, Tang D, Wang K, Wu X, Lu L, Yu H, Gu M, Yan C, Cheng Z (2011b). Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice.Plant Biotechnol J 9, 1002-1013.
27 Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, Kebrom TH, Provart N, Patel R, Myers CR, Reidel EJ, Turgeon R, Liu P, Sun Q, Nelson T, Brutnell TP (2010b). The developmental dynamics of the maize leaf transcriptome.Nat Genet 42, 1060-1067.
28 Li S, Qian Q, Fu Z, Zeng D, Meng X, Kyozuka J, Maekawa M, Zhu X, Zhang J, Li J, Wang Y (2009b). Short panicle1 encodes a putative PTR family transporter and determines rice panicle size.Plant J 58, 592-605.
29 Li W, Wu J, Weng S, Zhang Y, Zhang D, Shi C (2010c). Identification and characterization of dwarf 62, a loss- of-function mutation in DLT/OsGRAS-32 affecting gibberellin metabolism in rice.Planta 232, 1383-1396.
30 Li X, Yang Y, Yao J, Chen G, Li X, Zhang Q, Wu C (2009c). FLEXIBLE CULM 1 encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice.Plant Mol Biol 69, 685-697.
31 Luan W, Liu Y, Zhang F, Song Y, Wang Z, Peng Y, Sun Z (2011). OsCD1 encodes a putative member of the cellulose synthase-like D sub-family and is essential for rice plant architecture and growth.Plant Biotechnol J 9, 513-524.
32 Luo A, Qian Q, Yin H, Liu X, Yin C, Lan Y, Tang J, Tang Z, Cao S, Wang X, Xia K, Fu X, Luo D, Chu C (2006). EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice.Plant Cell Physiol 47, 181-191.
33 Luo AD, Liu L, Tang ZS, Bai XQ, Cao SY, Chu CC (2005). Down-regulation of OsGRF1 gene in rice rhd1 mutant results in reduced heading date.J Integr Plant Biol 47, 745-752.
34 Matsubara K, Yamanouchi U, Wang ZX, Minobe Y, Izawa T, Yano M (2008). Ehd2, a rice ortholog of the maize INDETERMINATE1 gene, promotes flowering by up- regulating Ehd1.Plant Physiol 148, 1425-1435.
35 Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M (2010). OsSPL14 promotes panicle branching and higher grain productivity in rice.Nat Genet 42, 545-549.
36 Morrissy AS, Morin RD, Delaney A, Zeng T, McDonald H, Jones S, Zhao Y, Hirst M, Marra MA (2009). Next- generation tag sequencing for cancer gene expression profiling.Genome Res 19, 1825-1835.
37 Nakagawa H, Tanaka A, Tanabata T, Ohtake M, Fujioka S, Nakamura H, Ichikawa H, Mori M (2012). SHORT GRAIN1 decreases organ elongation and brassinosteroid response in rice.Plant Physiol 158, 1208-1219.
38 Paul P, Awasthi A, Rai AK, Gupta SK, Prasad R, Sharma TR, Dhaliwal HS (2012). Reduced tillering in Basmati rice T-DNA insertional mutant OsTEF1 associates with differential expression of stress related genes and transcription factors.Funct Integr Genom 12, 291-304.
39 Peng LT, Shi ZY, Li L, Shen GZ, Zhang JL (2008). Overexpression of transcription factor OsLFL1 delays flowering time in Oryza sativa.J Plant Physiol 165, 876-885.
40 Qiao Y, Piao R, Shi J, Lee SI, Jiang W, Kim BK, Lee J, Han L, Ma W, Koh HJ (2011). Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.).Theor Appl Genet 122, 1439-1449.
41 Ryu CH, Lee S, Cho LH, Kim SL, Lee YS, Choi SC, Jeong HJ, Yi J, Park SJ, Han CD, An G (2009). OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice.Plant Cell Environ 32, 1412-1427.
42 Schuster SC (2008). Next-generation sequencing transforms today’s biology.Nat Methods 5, 16-18.
43 Shen Y, Jiang Z, Yao X, Zhang Z, Lin H, Zhao M, Liu H, Peng H, Li S, Pan G (2012). Genome expression profile analysis of the immature maize embryo during dedifferentiation.PLoS One 7, e32237.
44 Sun F, Zhang W, Xiong G, Yan M, Qian Q, Li J, Wang Y (2010). Identification and functional analysis of the MOC1 interacting protein 1.J Genet Genomics 37, 69-77.
45 Sun H, Qian Q, Wu K, Luo J, Wang S, Zhang C, Ma Y, Liu Q, Huang X, Yuan Q, Han R, Zhao M, Dong G, Guo L, Zhu X, Gou Z, Wang W, Wu Y, Lin H, Fu X (2014). Heterotrimeric G proteins regulate nitrogen-use efficiency in rice.Nat Genet 46, 652-656.
46 Su'udi M, Cha JY, Jung MH, Ermawati N, Han CD, Kim MG, Woo YM, Son D (2012). Potential role of the rice OsCCS52A gene in endoreduplication.Planta 235, 387-397.
47 t Hoen PA, Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen RH, de Menezes RX, Boer JM, van Ommen GJ, den Dunnen JT (2008). Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms.Nucleic Acids Res 36, e141.
48 Tabuchi H, Zhang Y, Hattori S, Omae M, Shimizu-Sato S, Oikawa T, Qian Q, Nishimura M, Kitano H, Xie H, Fang X, Yoshida H, Kyozuka J, Chen F, Sato Y (2011). LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems.Plant Cell 23, 3276-3287.
49 Takahashi Y, Shomura A, Sasaki T, Yano M (2001).Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2.Proc Natl Acad Sci USA 98, 7922-7927.
50 Takahashi Y, Teshima KM, Yokoi S, Innan H, Shimamoto K (2009). Variations in Hd1 proteins, Hd3a promoters, and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice.Proc Natl Acad Sci USA 106, 4555-4560.
51 Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C (2003). The OsTB1 gene negatively regulates lateral branching in rice.Plant J 33, 513-520.
52 Tanaka N, Itoh H, Sentoku N, Kojima M, Sakakibara H, Izawa T, Itoh J, Nagato Y (2011). The COP1 ortholog PPS regulates the juvenile-adult and vegetative-repro- ductive phase changes in rice.Plant Cell 23, 2143-2154.
53 Wang K, Tang D, Hong L, Xu W, Huang J, Li M, Gu M, Xue Y, Cheng Z (2010a). DEP and AFO regulate reproductive habit in rice.PLoS Genet 6, e1000818.
54 Wang QQ, Liu F, Chen XS, Ma XJ, Zeng HQ, Yang ZM (2010b). Transcriptome profiling of early developing cotton fiber by deep-sequencing reveals significantly differential expression of genes in a fuzzless/lintless mutant.Genomics 96, 369-376.
55 Yan WH, Wang P, Chen HX, Zhou HJ, Li QP, Wang CR, Ding ZH, Zhang YS, Yu SB, Xing YZ, Zhang QF (2011). A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice.Mol Plant 4, 319-330.
56 Yang Y, Peng Q, Chen GX, Li XH, Wu CY (2013). OsELF3 is involved in circadian clock regulation for promoting flowering under long-day conditions in rice.Mol Plant 6, 202-215.
57 Zhao J, Wang T, Wang M, Liu Y, Yuan S, Gao Y, Yin L, Sun W, Peng L, Zhang W, Wan J, Li X (2014). DWARF3 participates in an SCF complex and associates with DWARF14 to suppress rice shoot branching.Plant Cell Physiol 55, 1096-1109.
58 Zhu K, Tang D, Yan C, Chi Z, Yu H, Chen J, Liang J, Gu M, Cheng Z (2010). ERECT PANICLE2 encodes a novel protein that regulates panicle erectness in indica rice.Genetics 184, 343-350.
No related articles found!
Full text



[1] Yu Feng-lan;Wang Jing-ping;Li Jing-min and Shan Xue-qin. The Isolation and Identification of Sterols and Other Constituents from Seed Fat of Sapium sebiferum[J]. Chin Bull Bot, 1989, 6(02): 121 -123 .
[2] LI Al-Fen;CHEN Min amd ZHOU Bai-Cheng. Advances and Problems in Studies of Photosynthetic Pigment-Protein Complexes of Brown Algae[J]. Chin Bull Bot, 1999, 16(04): 365 -371 .
[3] CHEN Xiao-Mei and GUO Shun-Xing. Research Advances in Plant Disease Resistive Material[J]. Chin Bull Bot, 1999, 16(06): 658 -664 .
[4] LI Ji-Quan JIN You-Ju SHEN Ying-Bai HONG Rong. The Effect of Environmental Factors on Emission of Volatile Organic Compounds from Plants[J]. Chin Bull Bot, 2001, 18(06): 649 -656 .
[5] . [J]. Chin Bull Bot, 2005, 22(增刊): 157 .
[6] Jianxia Li, Chulan Zhang, Xiaofei Xia, Liangcheng Zhao. Cryo-sectioning Conditions and Histochemistry Comparison with Paraffin Sectioning[J]. Chin Bull Bot, 2013, 48(6): 643 -650 .
[7] JIANG Yang-Ming, CUI Wei-Hong, and DONG Qian-Lin. Comprehensive evaluation and analysis of tobacco planting environment based on space technology[J]. Chin J Plan Ecolo, 2012, 36(1): 47 -54 .
[8] Hu Cheng-biao, Zhu Hong-guang, Wei Yuan-lian. A Study on Microorganism and Biochemical Activity of Chinese-fir Plantation on Different Ecological Area in Guangxi[J]. Chin J Plan Ecolo, 1991, 15(4): 303 -311 .
[9] Hong-Xin SU Fan BAI Guang-Qi LI. Seasonal dynamics in leaf area index in three typical temperate montane forests of China: a comparison of multi-observation methods[J]. Chin J Plan Ecolo, 2012, 36(3): 231 -242 .
[10] AN Ran, GONG Ji-Rui, YOU Xin, GE Zhi-Wei, DUAN Qing-Wei, YAN Xin. Seasonal dynamics of soil microorganisms and soil nutrients in fast-growing Populus plantation forests of different ages in Yili, Xinjiang, China[J]. Chin J Plan Ecolo, 2011, 35(4): 389 -401 .