Chin Bull Bot ›› 2016, Vol. 51 ›› Issue (1): 16-23.doi: 10.11983/CBB15007

Previous Articles     Next Articles

Effect of Rhizosphere Ventilation on Growth of Cotton Seedlings Under Salt Stress

Lin Qi1, Xinfu Bai1*, Weihao Niu1, Zhenhua Zhang2   

  1. 1College of Life Sciences, Ludong University, Yantai 264025, China
    2College of Geography and Planning, Ludong University, Yantai 264025, China
  • Received:2015-01-12 Accepted:2015-03-30 Online:2016-02-01 Published:2016-01-01
  • Contact: Bai Xinfu
  • About author:? These authors contributed equally to this paper


We examined the effect of rhizosphere ventilation and salt stress on the growth of cotton seedings cultivated in nutrient solution. The changes in plant height, root volume, shoot and root biomasses as well as ash content in cotton seedlings were examined to investigate the effect of rhizosphere ventilation on the growth of cotton under salt stress. Salt stress inhibited the growth of cotton and led to decreased plant height, leaf area and dry weight; poor ventilation also decreased plant height, dry weight and mineral element absorption. A further comparison of the effect of rhizosphere ventilation and the combined effect of rhizosphere ventilation with salt stress showed a prominent effect of salt stress on plant height and total biomass, with a striking effect of rhizosphere ventilation on root volume, root biomass, root-to-shoot ratio and mineral element absorption (i.e., the adverse effect of salt stress was mainly exhibited on stems and leaves, and that of rhizosphere ventilation on root growth). In addition, the variation in cotton seedlings in terms of plant height, root volume, leaf area, root biomass and total biomass in the rhizosphere ventilation conditions was smaller than those in seedlings without ventilation. Rhizosphere ventilation could increase plantlet height, leaf area, dry weight, thereby alleviating the adverse effect of salt stresses.

Key words: cotton, rhizosphere ventilation, salt stress, growth

Figure 1

Changes in O2 content in culture solutions of different treatmentsA: Aeration+0 mmol·L-1 NaCl; B: No aeration+0 mmol·L-1 NaCl; C: Aeration+100 mmol·L-1 NaCl; D: No aeration+100 mmol·L-1 NaCl; E: Aeration+200 mmol·L-1 NaCl; F: No aeration+200 mmol·L-1 NaCl"

Figure 2

Comparison of the increments in plant height (A) and root volume (B) in different treatmentsA-F see Figure 1. Significant differences (P<0.05) were indicated with different lowercase letters."

Table 1

Analysis of the variance of the physiological indices in cotton seedlings under salt stress and ventilation"

Sources of variation Plant
leaf area
leaf area
Salt concention F value 174.56 43.42 91.43 2.56 106.84 61.75 24.40 89.03
P 0.000 0.000 0.000 0.943 0.000 0.000 0.000 0.000
Ventilation F value 16.63 360.63 416.34 16.33 67.76 236.02 349.23 724.15
P 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Interaction F value 11.47 22.15 2.99 5.73 4.48 9.02 13.69 10.50
P 0.000 0.000 0.065 0.008 0.020 0.001 0.000 0.000

Table 2

The salt stress resulted variance of the indices in cotton seedlings under different ventilation"

Aeration No aeration
Coefficient of
Coefficient of
Plant height (cm) 16.40±2.09 8.56±0.89 31.57 17.06±1.20 3.84±0.67 62.66
Root volume (cm3·plantlet-1) 11.40±1.45 7.98±2.05 17.54 6.60±0.87 1.18±0.15 79.39
Single leaf area (cm2) 137.78±6.18 109.39±10.22 11.52 101.73±6.26 60.93±5.46 24.90
Specific leaf area (cm2·g-1) 342.82±20.83 332.69±24.60 1.56 337.02±24.02 279.85±16.62 9.95
Total biomass (g·plantlet-1) 4.91±0.35 3.28±0.24 15.14 4.47±0.34 2.28±0.18 22.13
Root biomass (g·plantlet-1) 1.11±0.11 0.85±0.04 11.25 0.86±0.05 0.46±0.04 21.94
Root-shoot ratio 0.35±0.01 0.29±0.02 7.07 0.25±0.01 0.23±0.01 2.85
Ash content (%) 13.18±0.27 11.41±0.14 7.23 10.55±0.24 9.69±0.24 4.31

Figure 3

Comparison of the increments in single leaf area (A) and specific leaf area (B) in different treatmentsA-F see Figure 1. Significant differences (P<0.05) were indicated with different lowercase letters."

Figure 4

Comparison of shoot/root/total biomass (A) and root-shoot ratio (B) in different treatments A-F see Figure 1. Significant differences (P<0.05) were indicated with different lowercase letters."

Figure 5

Comparison of the increments in ash content in different treatments A-F see Figure 1. Significant differences (P<0.05) were indicated with different lowercase letters."

1 白团辉, 马锋旺, 李翠英, 束怀瑞, 韩明玉, 王昆 (2008). 苹果砧木幼苗对根际低氧胁迫的生理响应及耐性分析. 中国农业科学 41, 4140-4148.
2 柏新富, 卜庆梅, 谭永芹, 朱建军, 刘林德 (2012). NaCl对渗透胁迫下三角叶滨藜光合作用和水分状况的调节. 植物学报 47, 500-507.
3 陈庆彬, 雷凯健, 赵航, 郭莉, 安国勇 (2014). 一种适于营养胁迫研究的拟南芥水培方法. 植物学报 49, 462-468.
4 代建龙, 卢合全, 李振怀, 段留生, 董合忠 (2013). 盐胁迫下施肥对棉花生长及氮素利用的影响. 应用生态学报 24, 3453-3458.
5 郭超, 牛文全 (2010). 根际通气对盆栽玉米生长与根系活力的影响. 中国生态农业学报 18, 1194-1198.
6 李奕林 (2012). 水稻根系通气组织与根系泌氧及根际硝化作用的关系. 生态学报 32, 2066-2074.
7 刘义玲, 孙周平, 李天来 (2013). 根际低氧胁迫对网纹甜瓜果期根系氮代谢的影响. 生态学杂志 32, 2332-2338.
8 娄成后, 白克智, 宋茂山 (1964). 高等植物幼苗茎叶向根系运输氧气的研究——I. 茎叶向根系运氧的数量. 科学通报 6, 537-541.
9 潘澜, 薛立 (2012). 植物淹水胁迫的生理学机制研究进展. 生态学杂志 31, 2662-2672.
10 生利霞, 冯立国, 束怀瑞 (2011). 低氧胁迫下钙对樱桃根系功能及氮代谢的影响. 生态学杂志 30, 2209-2213.
11 孙运朋, 陈小兵, 张振华, 吴从稳, 颜坤, 张立华 (2013). 滨海棉田土壤盐分时空分布特征研究. 土壤学报 50, 891-899.
12 王汝镛, 武志杰, 曹承绵, 刘永恩, 张素君, 张岫岚, 王春裕, 田林杰 (2011). 近代黄河三角洲东营农业综合试验区的滨海盐渍土及其改良利用的研究. I. 土壤类型与性质. 土壤通报 32, 3-7.
13 王树凤, 胡韵雪, 孙海菁, 施翔, 潘红伟, 陈益泰 (2014). 盐胁迫对2种栎树苗期生长和根系生长发育的影响. 生态学报34, 1021-1029.
14 杨鹏, 胥晓 (2012). 淹水胁迫对青杨雌雄幼苗生理特性和生长的影响. 植物生态学报 36, 81-87.
15 弋良朋, 王祖伟 (2011). 盐胁迫下3种滨海盐生植物的根系生长和分布. 生态学报 31, 1195-1202.
16 曾小平, 蔡锡安, 赵平, 饶兴权 (2009). 广东鹤山人工林群落主要优势植物的热值和灰分含量. 应用生态学报 20, 485-492.
17 中国农业科学院棉花研究所 (2013). 中国棉花栽培学. 上海: 上海科学技术出版社. pp.101-114.
18 Bernstein N, Meiri A, Zilberstaine M (2004). Root growth of avocado is more sensitive to salinity than shoot growth.J Am Soc Hortic Sci 129, 188-192.
19 Grichko VP, Glick BR (2001). Ethylene and flooding stress in plants.Plant Physiol Bioch 39, 1-9.
20 Grzesiaka S, Grzesiaka MT, Huraa T, Marcińskaa I, Rzepka A (2013). Changes in root system structure, leaf water potential and gas exchange of maize and triticale seedlings affected by soil compaction.Environ Exp Bot 88, 2-10.
21 Horchani F, Khayati H, Raymond P, Brouquisse R, Aschi-Smiti S (2009). Contrasted effects of prolonged root hypoxia on tomato root and fruit (Solanum lycopersicum) metabolism.J Agron Crop Sci 195, 313-318.
22 Jackson MB (2008). Ethylene-promoted elongation: an adaptation to submergence stress.Ann Bot 101, 229-248.
23 Link KHR, Weng CC, Lo HF, Chen JT (2004). Study of the root antioxidative system of tomatoes and eggplants under waterlogged conditions.Plant Sci 167, 355-365.
24 Mano Y, Omori F (2013). Relationship between constitutive root aerenchyma formation and flooding tolerance in Zea nicaraguensis.Plant Soil 370, 447-460.
25 Maryam A, Nasreen S (2012). A review: water logging effects on morphological, anatomical, physiological and biochemical attributes of food and cash crops.Int J Water Resour Environ Sci 1, 113-120.
26 Mi YF, Ma XW, Chen SC (2013). Resistant evaluation of kiwifruit rootstocks to root zone hypoxia stress.Am J Plant Sci 4, 945-954.
27 Nakano Y (2007). Response of tomato root systems to environmental stress under soilless culture.Jpn Agri Res Q 41, 7-15.
28 Niu WQ, Jia ZX, Zhang X, Shao HB (2012). Effects of soil rhizosphere aeration on the root growth and water absorption of tomato.Clean-Soil Air Water 40, 1364-1371.
29 Pushpalatha G, Subrahmanyam D, Sreenu K, Ram T, Subbarao LV, Parmar B, Giri A, Sarla N, Rai V (2013). Effect of salt stress on seedling growth and antioxidant enzymes in two contrasting rice introgression lines.Indian J Plant Physiol 18, 360-366.
30 Shimamura S, Yamamoto R, Nakamura T, Shimada S, Komatsu S (2010). Stem hypertrophic lenticels and secondary aerenchyma enable oxygen transport to roots of soybean in flooded soil.Ann Bot 106, 277-284.
31 Voesenek LACJ, Sasidharan R (2013). Ethylene-and oxygen signaling-drive plant survival during flooding.Plant Biol 15, 426-435.
[1] Yang -Zhang Hua JieLiu. Cloning of Wheat TaLCD Gene and Its Regulation on Osmotic Stress [J]. Chin Bull Bot, 2020, 55(2): 0-0.
[2] . Advances in the Regulation of Plant Growth and Development by miR172-AP2 Module [J]. Chin Bull Bot, 2020, 55(2): 0-0.
[3] Yu-Tao HUANG. Alleviation effects of exogenous salicylic?acid on seed germination of kale under salt stress and its physiological basis [J]. Chin Bull Bot, 2020, 55(1): 0-0.
[4] . Effect of Different Facrors on Cell Growth and Polysaccharides Contents of Achyranthes Bidentata Bl. [J]. Chin Bull Bot, 2020, 55(1): 0-0.
[5] ZOU An-Long,LI Xiu-Ping,NI Xiao-Feng,JI Cheng-Jun. Responses of tree growth to nitrogen addition in Quercus wutaishanica forests in Mount Dongling, Beijing, China [J]. Chin J Plant Ecol, 2019, 43(9): 783-792.
[6] Guo Qianqian, Zhou Wenbin. Advances in the Mechanism Underlying Plant Response to Stress Combination [J]. Chin Bull Bot, 2019, 54(5): 662-673.
[7] LIU Xiao-Ming, YANG Xiao-Fang, WANG Xuan, ZHANG Shou-Ren. Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of Quercus wutaishanica and Acer pictum subsp. mono in a warm-temperate deciduous broad- leaved forest [J]. Chin J Plant Ecol, 2019, 43(3): 197-207.
[8] Li Lulu, Yin Wenchao, Niu Mei, Meng Wenjing, Zhang Xiaoxing, Tong Hongning. Functional Analysis of Brassinosteroids in Salt Stress Responses in Rice [J]. Chin Bull Bot, 2019, 54(2): 185-193.
[9] Ma Hongxiu,Wang Kaiyong,Zhang Kaixiang,Meng Chunmei,An Mengjie. Effect of Cottonseed Meal on Cotton Physiology and Growth Compensation Under Salinity-alkalinity Stress [J]. Chin Bull Bot, 2019, 54(2): 208-216.
[10] Zhang Tiantian, Wang Xuan, Ren Haibao, Yu Jianping, Jin Yi, Qian Haiyuan, Song Xiaoyou, Ma Keping, Yu Mingjian. A comparative study on the community characteristics of secondary and old-growth evergreen broad-leaved forests in Gutianshan, Zhejiang Province [J]. Biodiv Sci, 2019, 27(10): 1069-1080.
[11] Xian Yang, Dong Xin, Xie Xiaoman, Wu Dan, Han Biao, Wang Yan. Effect of Conservation Conditions on Restricting Conservation of Acer rubrum cv. ‘Somerset’ [J]. Chin Bull Bot, 2019, 54(1): 64-71.
[12] GAO Wen-Tong, ZHANG Chun-Yan, DONG Ting-Fa, XU Xiao. Effects of arbuscular mycorrhizal fungi on the root growth of male and female Populus cathayana individuals grown under different sexual combination patterns [J]. Chin J Plant Ecol, 2019, 43(1): 37-45.
[13] WEN Xiao-Shi, CHEN Bin-Hang, ZHANG Shu-Bin, XU Kai, YE Xin-Yu, NI Wei-Jie, WANG Xiang-Ping. Relationships of radial growth with climate change in larch plantations of different stand ages and species [J]. Chin J Plant Ecol, 2019, 43(1): 27-36.
[14] WU Xiao-Qi, YANG Sheng-He, HUANG Li, LI Xiao-Han, YANG Chao, QIAN Shen-Hua, YANG Yong-Chuan. Effects of forest canopy condition on the establishment of Castanopsis fargesii seedlings in a subtropical evergreen broad-leaved forest [J]. Chin J Plant Ecol, 2019, 43(1): 55-64.
[15] Zhang Xuhong, Wang Di, Liang Zhenxu, Sun Meiyu, Zhang Jinzheng, Shi Lei. Callus Induction and Establishment of a Plant Regeneration System with Lilium martagon [J]. Chin Bull Bot, 2018, 53(6): 840-847.
Full text



[1] Hu Shi-yi. Fertilization in Plants IV. Fertilization Barriers Inoompalibilty[J]. Chin Bull Bot, 1984, 2(23): 93 -99 .
[2] JIANG Gao-Ming. On the Restoration and Management of Degraded Ecosystems: with Special Reference of Protected Areas in the Restoration of Degraded Lands[J]. Chin Bull Bot, 2003, 20(03): 373 -382 .
[3] . [J]. Chin Bull Bot, 1994, 11(专辑): 65 .
[4] . [J]. Chin Bull Bot, 1996, 13(专辑): 103 .
[5] ZHANG Xiao-Ying;YANG Shi-Jie. Plasmodesmata and Intercellular Trafficking of Macromolecules[J]. Chin Bull Bot, 1999, 16(02): 150 -156 .
[6] Chen Zheng. Arabidopsis thaliana as a Model Species for Plant Molecular Biology Studies[J]. Chin Bull Bot, 1994, 11(01): 6 -11 .
[7] . [J]. Chin Bull Bot, 1996, 13(专辑): 13 -16 .
[8] LEI Xiao-Yong HUANG LeiTIAN Mei-ShengHU Xiao-SongDAI Yao-Ren. Isolation and Identification of AOX (Alternative Oxidase) in ‘Royal Gala’ Apple Fruits[J]. Chin Bull Bot, 2002, 19(06): 739 -742 .
[9] Chunpeng Yao;Na Li. Research Advances on Abscisic Acid Receptor[J]. Chin Bull Bot, 2006, 23(6): 718 -724 .
[10] Li Wang, Qinqin Wang, Youqun Wang. Cytochemical Localization of ATPase and Acid Phosphatase in Minor Veins of the Leaf of Vicia faba During Different Developmental Stages[J]. Chin Bull Bot, 2014, 49(1): 78 -86 .