Chinese Bulletin of Botany ›› 2015, Vol. 50 ›› Issue (6): 699-705.doi: 10.11983/CBB14206

Previous Articles     Next Articles

Changes in Sink-source Variation Characteristics of Different Rice Varieties

Jingjing Cui, Kezhang Xu, Jingjiao Shi, Zhihai Wu, Zhanyu Chen, Zhian Zhang*, Chunsheng Wu   

  1. Agronomy College, Jilin Agricultural University, Changchun 130118, China
  • Received:2014-12-08 Accepted:2015-03-19 Online:2015-09-06 Published:2015-11-01
  • Contact: Zhang Zhian E-mail:zhangzhian6412@163.com
  • About author:

    ? These authors contributed equally to this paper

Abstract:

We aimed to understand the relationship between sink, source and sink-source in Oryza sativa cultivars released in different years. With 33 rice varieties bred for materials, sink, source and sink-source were studied from 1958 to 2005 in Jilin Province. Rice genetic-improvement sink and source traits improved in Jilin Province in 47 years. For sink, panicle weight and number of seeds were positively correlated with year of release, increased by 62.93% and 37.65%, respectively, and 1.34% and 0.80% on average, respectively. For source, leaf area per plant, flag leaf photosynthetic capacity and net photosynthetic rate (Pn) were positively correlated with year of release, increased by 13.75%, 24.80% and 12.60%, with the annual growth rate 0.29%, 0.53% and 0.27% in last 47 years. Different rice varieties ear weight/plant photosynthetic capacity and grains/plant photosynthetic capacity did not differ. However, panicle weight/leaf area and grains/leaf area showed a significant positive correlation with breeding age (correlation coefficients 0.441 0, P<0.05, and 0.401 7, P<0.05). Panicle weight/Pn and grains/Pn showed a significant positive correlation with breeding age (correlation coefficients 0.509 3, P<0.01, and 0.483 2, P<0.01). Rice production can be increased as a result of sink-source interaction in Jilin Province, but improving photosynthetic capacity per unit leaf area growth lags far behind other sink-source traits. Improving the leaf Pn, leaf photosynthetic capacity should improve with the new high-yielding rice varieties breeding goals.

Table 1

Name, release year and breeding units of 33 rice cultivars"

Cultivar Release year Breeding units Cultivar Release year Breeding units
Songliao1 1958 JAAS Jiudao11 1990 YAAS
Changbai1 1959 JAAS Yanjing17 1990 JCAAS
Songliao2 1959 JAAS Jiudao12 1992 JCAAS
Songliao4 1959 JAAS Tong35 1995 THAS
Jijing44 1967 JAAS Jiyujing 1996 JAAS
Jijing51 1967 JAAS Jijing66 1997 JAAS
Jijing53 1967 JAAS Nongda8 1998 JLAU
Jijing60 1973 JAAS Tongyu124 1999 THAS
Jiudao1 1974 JCAAS Chaochan2 2000 JAAS
Jiudao4 1974 JCAAS Changbai10 2000 JAAS
Jiudao5 1975 JCAAS Jijing78 2001 JAAS
Xi14 1978 JAAS Changbai11 2002 JAAS
Shuangfeng8 1980 YJAS Tongjing611 2003 THAS
Jijing61 1983 JAAS Jijing88 2004 JAAS
Ji89-45 1984 JAAS Jijing89 2005 THAS
Jijing62 1987 JAAS Tongjing791 2005 JAAS
Jijing63 1989 JAAS

Figure 1

Change of panicle weight (A) and numbers of seed (B) of rice with year of release"

Figure 2

The change of leaf area per plant (A), photosynthetic capacity of per plant (B), net photosynthetic rate (Pn) of flag leaf (C) of rice with year of release"

Figure 3

The change of spanicle weight/leaf area (A), No. of seed/leaf area (B) of rice with year of release"

Figure 4

The change of panicle weight/photosynthetic capacity (A), No. of seed/photosynthetic capacity (B) of rice with year of release"

Figure 5

The change of panicle weight/net photosynthetic rate (Pn) (A) and No. of seed/Pn (B) of rice with year of release"

Table 2

Relationship between the sink and the source of different rice varieties cultivars"

Single plant leaf
area
Net photosynthetic
rate (Pn)
Photosynthetic capacity
of plant
Panicle weight
Pn 0.261 3
Photosynthetic capacity of plant 0.802 3** 0.783 7**
Panicle weight 0.082 6 0.383 1* 0.304 4*
No. of seed 0.321 6 0.440 8* 0.475 1** 0.537 5**
[1] 曹树青, 翟虎渠, 张荣铣, 杨图南, 匡廷云 (2001). 水稻种质资源光合速率及光合功能期的研究. 中国水稻科学 15, 29-34.
[2] 陈温福, 徐正进, 张龙步 (2005). 北方粳型超级稻育种的理论与方法. 沈阳农业大学学报 36, 3-8.
[3] 程式华, 曹立勇, 陈深广, 朱德峰, 王熹, 闵绍楷, 翟虎渠 (2005). 后期功能型超级杂交稻的概念及生物学意义. 中国水稻科学 19, 280-284.
[4] 大野义一 (1979). 籼稻光合效率的品种间差异和干物质生产. 北京: 中国农业出版社. pp. 11-108.
[5] 段俊, 梁承邺, 黄毓文, 陈宝源, 罗廉源 (1996). 不同类型水稻品种(组合)籽粒灌浆特性及库源关系的比较研究. 中国农业科学 29(3), 66-73.
[6] 黄育民, 陈启锋, 李义珍 (1998). 我国水稻品种改良过程源库特征的变化. 福建农业大学学报 27, 271-278.
[7] 黄育民, 李义珍, 庄占龙, 郑景生, 余瑞远 (1996). 杂交稻高产群体干物质积累运转I. 干物质的积累运转. 福建省农科院学报 11(2), 7-11.
[8] 姜楠, 邸玉婷, 徐克章, 赵国臣, 凌凤楼, 武志海, 张治安 (2011). 吉林省不同年代育成水稻品种上三叶光合特性的变化. 作物学报 37, 703-710.
[9] 凌启鸿 (1995).水稻群体质量理论与实践. 北京: 中国农业出版社. pp. 34-44.
[10] 刘宛, 徐正进, 陈温福, 李金泉, 李磊鑫, 张龙步 (2001). 不同氮素水平对直立穗型水稻品种群体光合特性的影响. 沈阳农业大学学报 32, 8-12.
[11] 马文波, 马均, 明东风, 许凤英, 严志彬, 孙晓辉 (2003). 不同穗重型水稻品种剑叶光合特性的研究. 作物学报 29, 236-240.
[12] 盛大海, 刘元英, 李广宇 (2009). 水稻源库关系研究进展与应用. 东北农业大学学报 40(5), 117-122.
[13] 苏祖芳, 张亚洁, 张娟, 张海泉, 姚志发, 沈富荣, 姚友权, 李本良 (1995).基蘖肥与穗粒肥配比对水稻产量形成和群体质量的影响. 江苏农学院学报 16(3), 21-30.
[14] 屠乃美, 官春云 (1999). 水稻幼穗分化期间减源对源库关系的影响. 湖南农业大学学报 25, 430-436.
[15] 杨惠杰, 李义珍, 黄育民, 郑景生, 姜照伟, 林文 (1999). 超高产水稻的产量构成和库源结构. 福建农业学报 14, 1-5.
[16] 杨建昌, 苏宝林, 王志琴, 郎有忠, 朱庆森 (1998). 亚种间杂交稻籽粒灌浆特性及其生理的研究. 中国农业科学 31, 7-14.
[17] 殷宏章, 沈允钢, 陈因, 余志新, 李娉嫦 (1956). 水稻开花后干物质的积累和运输. 植物学报 5, 177-194.
[18] 赵国臣, 郭唏明 (2000). 21世纪吉林省水稻栽培研究展望. 延边大学农学学报 22, 63-65.
[19] 赵全志, 高尔明, 黄丕生, 凌启鸿, 孙淑萍, 焦三军 (1999). 源库质量与作物超高产栽培及育种. 河南农业大学学报 33, 226-230.
[20] 赵全志, 黄丕生, 凌启鸿, 高尔明, 董家胜 (2000). 水稻颖花伤流量与群体质量的关系. 南京农业大学学报 23(3), 9-12.
[21] Sasaki H, Ishii R (1992). Cultivar differences in leaf photosynthesis of rice bred in Japan.Photosynth Res 32, 139-146.
[22] Wilson J (1971). Photosynthesis and energy conversion. In: Warring PF, Cooper JP, eds. Potential Crop Production. Exeter: Educational Books. pp. 43-75.
[23] Yang JC, Zhang WH, Wang ZQ, Liu LJ, Zhu QS (2002). Source-sink characteristics and the translocation of assimilates in new plant type and intersubspecific hybrid rice.Agric Sci China 1, 155-162.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Jun;ZHAO Lan-Yong;FENG Zhen;ZHANG Mei-Rong;WU Yin-Feng. Optimization Selection of Genetic Transformation Regeneration System from Leaves of Dendranthema morifolium[J]. Chinese Bulletin of Botany, 2004, 21(05): 556 -558 .
[2] Luo Jian-ping and Ja Jing-fen. Structure and Function of Plant Oligosaceaharins[J]. Chinese Bulletin of Botany, 1996, 13(04): 28 -33 .
[3] YANG Qi-He SONG Song-Quan YE Wan-HuiYIN Shou-HuaT. Mechanism of Seed Photosensitivity and FactorsInfluencing Seed Photosensitivity[J]. Chinese Bulletin of Botany, 2003, 20(02): 238 -247 .
[4] CUI Yue-Hua;WANG Mao and SUN Ke-Lian. Morphological Study of Gutta-containing Cells in Eucommia ulmoides Oliv.[J]. Chinese Bulletin of Botany, 1999, 16(04): 439 -443 .
[5] . Advances in Research into Low-Phytic-Acid Mutants in Crops[J]. Chinese Bulletin of Botany, 2005, 22(04): 463 -470 .
[6] Cong Ma, Weiwen Kong. Research Progress in Plant Metacaspase[J]. Chinese Bulletin of Botany, 2012, 47(5): 543 -549 .
[7] Chang’en Tian, Yuping Zhou. Research Progress in Plant IQ Motif-containing Calmodulin-binding Proteins[J]. Chinese Bulletin of Botany, 2013, 48(4): 447 -460 .
[8] Huawei Xu, Dianyun Hou. Research Advances in Protein Transport into Chloroplasts in Plant Cell#br#[J]. Chinese Bulletin of Botany, 2018, 53(2): 264 -275 .
[9] Li Jiandong, Zheng Huiying. ?ber die Anwendung der Braun-Blanquet's Methode in der Steppen-Untersuchung[J]. Chin J Plan Ecolo, 1983, 7(3): 186 -203 .
[10] Cheng Changdu. Proposals on Some Problems to Develop the Agriculture, Forestry, Animal Husbandry and Fishery as well as Sideline Culture from the View-point of Ecological Balance[J]. Chin J Plan Ecolo, 1981, 5(1): 65 -71 .