植物学报 ›› 2015, Vol. 50 ›› Issue (2): 234-240.doi: 10.3724/SP.J.1259.2015.00234

• 研究报告 • 上一篇    下一篇

我国温带山地森林48种常见树种叶片重量-出叶强度的关系

刘长柱1,2, 郭强3, 池秀莲3,*()   

  1. 1中国科学院植物研究所, 北京 100093
    2中国科学院大学生命科学学院, 北京 100049 3北京大学城市与环境学院生态学系, 北京 100871
  • 收稿日期:2014-03-20 接受日期:2014-11-17 出版日期:2015-03-01 发布日期:2015-04-10
  • 通讯作者: 池秀莲 E-mail:xiulian68@126.com
  • 作者简介:

    ? 共同第一作者

  • 基金资助:
    国家自然科学基金委创新群体项目(No.31321061)及基础性工作专项(No.2011FY110300)

Relationship Between Leaf Mass and Leafing Intensity for 48 Tree Species in the Temperate Mountain Forests in China

Changzhu Liu1, 2, Qiang Guo3, Xiulian Chi3, *   

  1. 1Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    2College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
    3Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
  • Received:2014-03-20 Accepted:2014-11-17 Online:2015-03-01 Published:2015-04-10
  • Contact: Chi Xiulian E-mail:xiulian68@126.com
  • About author:

    ? These authors contributed equally to this paper

摘要:

叶片是植物的主要光合器官, 其质量与数量的权衡关系体现植物对环境的适应策略。在全球气候变化的背景下, 研究叶片质量与数量关系有助于理解植物对环境变化的响应趋势。该研究应用标准化主轴回归方法, 探讨了我国温带山地森林中48个常见树种的单叶干重与出叶强度的权衡关系。结果表明, 所有物种以及落叶阔叶林、常绿和落叶阔叶树种、单叶以及亚冠层阔叶树种的单叶干重与出叶强度表现为异速生长关系; 针叶林、针阔混交林、常绿及落叶针叶树种、复叶以及冠层阔叶树种则表现为等速生长关系。研究结果表明, 叶大小和出叶强度并无恒定的权衡关系。

Abstract:

Leaves are the main photosynthetic organs of plant. The trade-off between leaf mass and leafing intensity reflects an important adaptive strategy of the plant to the environment. Studies of the mechanisms of such a trade-off under global climate-change scenarios will help in better understanding the responses of plants to environmental fluctuations. In this study, we used the standardized major axis estimation method to examine the relationship between leaf mass and leafing intensity within current-year twigs from 48 tree species sampled from 4 mountains in temperate regions of China. The trade-off between leaf mass and leafing intensity was allometric for all twigs and those from a deciduous broadleaf forest, simple broadleaf species and understorey broadleaf species but isometric for twigs from coniferous and mixed coniferous broadleaf forests, evergreen and deciduous broadleaf species, compound broadleaf species and canopy broadleaf species. Thus, the trade-off between leaf size and leafing intensity is not ubiquitous for species of different leaf forms and life forms, canopy status, or species from different forest types.

表1

采样点基本信息"

Site Latitude Longitude Altitude (m) Forest type Number of species
Fenglin 48°07'20"N 129°11'25″E 330-370 Mixed Pinus koraiensis and deciduous broadleaf forest 8
Mt. Changbai 42°24'33" N 128°05'15″E 750-790 Mixed P. koraiensis and deciduous broadleaf forest 14
Mt. Dongling 39°57′26″N 115°25′29″E 1 200-1 260 Quercus wutaishanica forest 6
Mt. Dongling 39°57′06″N 115°25′39″E 1 300-1 360 Betula platyphylla forest 4
Mt. Taibai 34°04'17″N 107°41'37″E 1 600-1 700 Q. aliena var. acuteserrata forest 14
Mt. Taibai 34°03'18″N 107°41'55″E 2 140-3 140 Q. wutaishanica forest 13
Mt. Taibai 34°01'10″N 107°48'52″E 2 810-3 000 Abies fargesii forest 5
Mt. Taibai 34°00'02″N 107°48'30″E 3 100-3 270 Larix gmelinii forest 1

图1

中国温带地区48种常见乔木树种单叶干重与出叶强度的关系"

表2

不同类型小枝单叶干重与出叶强度关系的标准化主轴估计比较"

Groups Species groups Number of
samples/species
Slope 95% confidence interval R2
All All species 918/48 -1.06 -1.07- -1.05 0.98
Forest type Deciduous coniferous forest 15/1 -1.05ab -1.49- -0.74 0.64
Evergreen coniferous forest 74/3 -1.02ab -1.04- -0.99 0.99
Coniferous and broadleaf forest 262/17 -0.99a -1.01- -0.97 0.98
Deciduous broadleaf forest 567/26 -1.02b -1.03- -1.01 0.98
Life form
Evergreen conifers 45/2 -1.00a -1.12- -0.89 0.86
Deciduous conifers 15/1 -1.05a -1.49- -0.74 0.64
Evergreen broadleaf species 30/2 -1.05a -1.11- -1.01 0.98
Deciduous broadleaf species 828/43 -1.03a -1.04- -1.02 0.98
Leaf form Simple broadleaf species 712/37 -1.05b -1.07- -1.04 0.96
Compound broadleaf species 146/8 -0.99a -1.01- -0.97 0.99
Canopy status Canopy broadleaf species 468/25 -1.00a -1.01- -0.98 0.99
Understorey broadleaf species 390/2 -1.10b -1.12- -1.07 0.95
1 任海, 彭少麟, 张祝平, 张文其 (1996). 鼎湖山季风常绿阔叶林林冠结构与冠层辐射研究. 生态学报 16, 174-179.
2 杨冬梅, 占峰, 张宏伟 (2012). 清凉峰不同海拔木本植物小枝内叶大小-数量权衡关系. 植物生态学报 36, 281-291.
3 Ackerly DD, Donoghue MJ (1998). Leaf size, sapling allometry, and Corner's rules: phylogeny and correlated evolution in maples (Acer).Am Nat 152, 767-791.
4 Ackerly DD, Knight C, Weiss S, Barton K, Starmer K (2002). Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses.Oecologia 130, 449-457.
5 Ackerly DD, Reich PB (1999). Convergence and corre- lations among leaf size and function in seed plants: a comparative test using independent contrasts.Am J Bot 86, 1272-1281.
6 Bonser SP, Aarssen LW (1994). Plastic allometry in young sugar maple (Acer saccharum): adaptive responses to light availability.Am J Bot 81, 400-406.
7 Givnish TJ (1978). Ecological aspects of plant morphology: leaf form in relation to environment.Acta Biotheor 27, 83-142.
8 Givnish TJ (1987). Comparative studies of leaf form: assessing the relative roles of selective pressures and phylogenetic constraints.New Phytol 106, 131-160.
9 Givnish TJ, Vermeij GJ (1976). Sizes and shapes of liane leaves.Am Nat 110, 743-778.
10 Gleason HA, Cronquist A (1991). Manual of Vascular Plants of Northeastern United States and Adjacent Canada. New York: The New York Botanical Garden.
11 Jakobsson A, Eriksson O (2000). A comparative study of seed number, seed size, seedling size and recruitment in grassland plants.Oikos 88, 494-502.
12 Jensen KH, Zwieniecki MA (2013). Physical limits to leaf size in tall trees.Phys Rev Lett 110, 018104.
13 Kleiman D, Aarssen LW (2007). The leaf size/number trade-off in trees.J Ecol 95, 376-382.
14 Li T, Deng JM, Wang GX, Cheng DL, Yu ZL (2009). Isometric scaling relationship between leaf number and size within current-year shoots of woody species across contrasting habitats.Polish J Ecol 57, 659-667.
15 Milla R (2009). The leafing intensity premium hypothesis tested across clades, growth forms and altitudes.J Ecol 97, 972-983.
16 Moles AT, Falster DS, Leishman MR, Westoby M (2004). Small-seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime.J Ecol 92, 384-396.
17 Moles AT, Westoby M (2000). Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage?Oikos 90, 517-524.
18 Niinemets Ü (1998). Are compound-leaved woody species inherently shade-intolerant? An analysis of species ecological requirements and foliar support costs.Plant Ecol 134, 1-11.
19 Niinemets Ü, Portsmuth A, Tena D, Tobias M, Matesanz S, Valladares F (2007a). Do we underestimate the impor- tance of leaf size in plant economics? Disproportional scaling of support costs within the spectrum of leaf physiognomy.Ann Bot 100, 283-303.
20 Niinemets Ü, Portsmuth A, Tobias M (2006). Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants.New Phytol 171, 91-104.
21 Niinemets Ü, Portsmuth A, Tobias M (2007b). Leaf shape and venation pattern alter the support investments within leaf lamina in temperate species: a neglected source of leaf physiological differentiation?Funct Ecol 21, 28-40.
22 Parkhurst DF, Loucks OL (1972). Optimal leaf size in relation to environment.J Ecol 60, 505-537.
23 Poorter H, Pepin S, Rijkers T, De Jong Y, Evans JR, Körner C (2006). Construction costs, chemical composi- tion and payback time of high-and low-irradiance leaves.J Exp Bot 57, 355-371.
24 R Core Team (2013). R: a language and environment for statistical computing. R Foundation for Statistical Compu- ting, Vienna, Austria. URL .
25 Ryan MG, Yoder BJ (1997). Hydraulic limits to tree height and tree growth.Bioscience 47, 235-242.
26 Shipley B, Dion J (1992). The allometry of seed production in herbaceous angiosperms.Am Nat 139, 467-483.
27 Stearns SC (1989). Trade-offs in life-history evolution.Funct Ecol 3, 259-268.
28 Sun SC, Jin DM, Shi PL (2006). The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship.Ann Bot 97, 97-107.
29 Venable DL (1992). Size-number trade-offs and the variation of seed size with plant resource status.Am Nat 140, 287-304.
30 Warton DI, Weber NC (2002). Common slope tests for bivariate errors-in-variables models.Biometrical J 44, 161-174.
31 Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry.Biol Rev 81, 259-291.
32 Watson MA, Casper BB (1984). Morphogenetic constraints on patterns of carbon distribution in plants.Annu Rev Ecol Syst 15, 233-258.
33 Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: some leading dimensions of variation between species.Annu Rev Ecol Syst 33, 125-159.
34 Westoby M, Wright IJ (2003). The leaf size-twig size spectrum and its relationship to other important spectra of variation among species.Oecologia 135, 621-628.
35 Whitman T, Aarssen LW (2010). The leaf size/number trade-off in herbaceous angiosperms.J Plant Ecol 3, 49-58.
36 Wright IJ, Westoby M, Reich PB (2002). Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span.J Ecol 90, 534-543.
37 Yang DM, Li GY, Sun SC (2008). The generality of leaf size versus number trade-off in temperate woody species.Ann Bot 102, 623-629.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙诚 谢磊 李良千. 铁线莲属尾叶铁线莲组(毛茛科)基于形态学证据的分支系统学[J]. 植物学报, 2007, 24(01): 87 -98 .
[2] 于丽杰 崔继哲 张大维 孙德武 王凤春. 细叶益母草叶表面腺毛多样性及发育形态学研究[J]. 植物学报, 1999, 16(05): 602 -605 .
[3] 樊梦康. 怀念崔师[J]. 植物学报, 1998, 15(专辑): 31 -32 .
[4] 王玉华 杨清 陈敏. 植物糖感知和糖信号传导[J]. 植物学报, 2004, 21(03): 273 -279 .
[5] 赵琦 刘存德. 地外植物学与空间利用[J]. 植物学报, 1995, 12(02): 15 -18 .
[6] 洪维廉 叶和春 段续川 许霖庆. 二百种植物叶片细胞机械分离试验[J]. 植物学报, 1985, 3(04): 21 -24 .
[7] . Advances of Studies on the Cathaysia Flora in China[J]. 植物学报, 2000, 17(专辑): 11 -20 .
[8] 杨江义 李旭锋. 植物雌性单倍体的离体诱导[J]. 植物学报, 2002, 19(05): 552 -559 .
[9] 杜令阁 胡桂珍 杨振堂 李方元 李安生 邵启全 付志明. 人参杂种胚培养及体细胞无性系的建立[J]. 植物学报, 1991, 8(增刊): 32 -36 .
[10] 徐星明 赵成章. 植物转基因的进展与禾谷类作物转基因的评估[J]. 植物学报, 1992, 9(04): 1 -12 .