植物学报 ›› 2017, Vol. 52 ›› Issue (1): 4-9.doi: 10.11983/CBB16221

所属专题: 水稻生物学专辑

• 热点评 • 上一篇    下一篇

组学技术揭示水稻杂种优势遗传机制

汪鸿儒, 储成才*()   

  1. 中国科学院遗传与发育生物学研究所植物基因组学国家重点实验室, 北京 100101
  • 收稿日期:2016-11-15 接受日期:2016-12-10 出版日期:2017-01-01 发布日期:2017-01-23
  • 通讯作者: 储成才 E-mail:ccchu@genetics.ac.cn
  • 作者简介:

    # 共同第一作者

  • 基金资助:
    中国科学院战略性先导专项(No;XDA08010400)和科技部973项目(No.2015CB150106)

Underlying Mechanism of Heterosis Unveiled by -Omics

Hongru Wang, Chengcai Chu*   

  1. The State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2016-11-15 Accepted:2016-12-10 Online:2017-01-01 Published:2017-01-23
  • Contact: Chu Chengcai E-mail:ccchu@genetics.ac.cn
  • About author:

    # Co-first authors

摘要:

杂种优势是杂交后代在生长或生殖性状上表现出优于亲本的现象。虽然杂种优势在农业生产上已广为应用, 但其分子机理仍不清楚。最近, 中国科学家通过分析17个代表性杂交稻(Oryza sativa)品种, 共10 074个F2个体的全基因组序列和表型, 对水稻产量杂种优势相关位点进行了系统定位和解析。此外, 中国另一个科研小组通过整合杂交稻亲本和杂交种的表型组、转录组及基因组等多层次数据, 深入研究了超级杂交稻两优培九产量的杂种优势基础。这些研究不仅为杂种优势理论的建立提供了新数据, 也为水稻育种实践提供了有益的指导。

Abstract:

Heterosis, or hybrid vigor, is the phenomenon that hybrid displays growth or fertility superiority over its parents. Though widely exploited in agriculture, the underlying molecular mechanism of heterosis remains one of the lasting mysteries in biology. Recently, Chinese scientists leveraged genomics tools and systemically characterized the genetic architecture of rice heterosis using 10 074 F2 individuals resulting from 17 representative elite rice hybrid cultivars. Another Chinese team focused on the super hybrid cultivar LYP9 and studied its yield heterosis by integrating phenomic, genomic and transcriptomic data. The comprehensive mapping and analysis of heterosis QTLs with multi-omics tools provide valuable data for both testing heterosis hypothesis and purposely manipulating heterosis for breeding new cultivars.

图1

通过聚合优良等位基因位点致使常规品种(A)与杂交稻品种(B)间产量差距不断缩小"

[1] 胡忠孝, 田妍, 徐秋生 (2016). 中国杂交水稻推广历程及现状分析. 杂交水稻 2, 1-8.
[2] Birchler JA (2015). Heterosis: the genetic basis of hybrid vigour.Nat Plants 1, 15020.
[3] Birchler JA (2016). Hybrid vigour characterized.Nature 537, 620-621.
[4] Birchler JA, Veitia RA (2007). The gene balance hypothe- sis: from classical genetics to modern genomics.Plant Cell 19, 395-402.
[5] Birchler JA, Yao H, Chudalayandi S, Vaiman D, Veitia RA (2010). Heterosis.Plant Cell 22, 2105-2112.
[6] Charlesworth B, Charlesworth D (2010). Elements of Evo- lutionary Genetics. Greenwood Village, Colorado: Roberts and Company. pp.182.
[7] Charlesworth D, Willis JH (2009). The genetics of inbreed- ing depression.Nat Rev Genet 10, 783-796.
[8] Darwin CR (1876). The Effects of Cross- and Self-fertiliza- tion in the Vegetable Kingdom. London: John Murray.
[9] Duvick DN (2001). Biotechnology in the 1930s: the deve- lopment of hybrid maize.Nat Rev Genet 2, 69-74.
[10] Garcia AAF, Wang S, Melchinger AE, Zeng ZB (2008). Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice.Genetics 180, 1707-1724.
[11] Goff SA (2011). A unifying theory for general multigenic he- terosis: energy efficiency, protein metabolism, and implica- tions for molecular breeding.New Phytol 189, 923-937.
[12] Groose R, Talbert L, Kojis W, Bingham E (1989). Progres- sive heterosis in autotetraploid alfalfa: studies using two types of inbreds.Crop Sci 29, 1173-1177.
[13] Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S, Zhang Q (2003). Single-locus heterotic effects and dominance by domin- ance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid.Proc Natl Acad Sci USA 100, 2574-2579.
[14] Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, Dong G, Sang T, Han B (2009). High-throughput genotyping by whole- genome resequencing.Genome Res 19, 1068-1076.
[15] Huang X, Yang S, Gong J, Zhao Q, Feng Q, Zhan Q, Zhao Y, Li W, Cheng B, Xia J, Chen N, Huang T, Zhang L, Fan D, Chen J, Zhou C, Lu Y, Weng Q, Han B (2016). Genomic architecture of heterosis for yield traits in rice.Nature 537, 629-633.
[16] Huang X, Yang S, Gong J, Zhao Y, Feng Q, Gong H, Li W, Zhan Q, Cheng B, Xia J, Chen N, Hao Z, Liu K, Zhu C, Huang T, Zhao Q, Zhang L, Fan D, Zhou C, Lu Y, Weng Q, Wang Z, Li J, Han B (2015). Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis.Nat Commun 6, 6258.
[17] Jiang K, Liberatore KL, Park SJ, Alvarez JP, Lippman ZB (2013). Tomato yield heterosis is triggered by a dosage sensitivity of the florigen pathway that fine-tunes shoot architecture. PLoS Genet 9, e1004043.
[18] Jin J, Huang W, Gao JP, Yang J, Shi M, Zhu MZ, Luo D, Lin HX (2008). Genetic control of rice plant architecture under domestication.Nat Genet 40, 1365-1369.
[19] Jones DF (1917). Dominance of linked factors as a means of accounting for heterosis.Proc Natl Acad Sci USA 3, 310-312.
[20] Kaeppler S (2011). Heterosis: one boat at a time, or a rising tide?New Phytol 189, 900-902.
[21] Kaeppler S (2012). Heterosis: many genes, many mechan- isms—end the search for an undiscovered unifying theo- ry.ISRN Botany 2012, 682824.
[22] Krieger U, Lippman ZB, Zamir D (2010). The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat Genet 42, 459-463.
[23] Li D, Huang Z, Song S, Xin Y, Mao D, Lv Q, Zhou M, Tian D, Tang M, Wu Q, Liu X, Chen T, Song X, Fu X, Zhao B, Liang C, Li A, Liu G, Li S, Hu S, Cao X, Yu J, Yuan L, Chen C, Zhu L (2016). Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase.Proc Natl Acad Sci USA 113, E6026-E6035.
[24] Li ZK, Luo L, Mei H, Wang D, Shu Q, Tabien R, Zhong D, Ying C, Stansel J, Khush G, Paterson A (2001). Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield.Genetics 158, 1737-1753.
[25] Lin Z, Griffith ME, Li X, Zhu Z, Tan L, Fu Y, Zhang W, Wang X, Xie D, Sun C (2007). Origin of seed shattering in rice (Oryza sativa L.).Planta 226, 11-20.
[26] Lippman ZB, Zamir D (2007). Heterosis: revisiting the magic.Trends Genet 23, 60-66.
[27] Luo L, Li ZK, Mei H, Shu Q, Tabien R, Zhong D, Ying C, Stansel J, Khush G, Paterson A (2001). Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield compo- nents.Genetics 158, 1755-1771.
[28] Schnable PS, Springer NM (2013). Progress toward understanding heterosis in crop plants.Annu Rev Plant Biol 64, 71-88.
[29] Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Cao XF (2013). Targeted genome modification of crop plants using a CRISPR-Cas system.Nat Biotechnol 31, 686-688.
[30] Shull GH (1908). The composition of a field of maize.J Hered 4, 296-301.
[31] Sockness BA, Dudley J (1989). Performance of single and double cross autotetraploid maize hybrids with different levels of inbreeding.Crop Sci 29, 875-879.
[32] Tan L, Li X, Liu F, Sun X, Li C, Zhu Z, Fu Y, Cai H, Wang X, Xie D, Sun C (2008). Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet 40, 1360-1364.
[33] The3000 Rice Genome Project (2014). The 3 000 rice genomes project.Giga Sci 3, 7.
[34] Troyer AF (2006). Adaptedness and heterosis in corn and mule hybrids.Crop Sci 46, 528-543.
[35] Wang H, Xu X, Vieira FG, Xiao Y, Li Z, Wang J, Nielsen R, Chu C (2016). The power of inbreeding: NGS based GWAS of rice reveals convergent evolution during rice domestication.Mol Plant 9, 975-985.
[36] Wei G, Tao Y, Liu G, Chen C, Luo R, Xia H, Gan Q, Zeng H, Lu Z, Han Y, Li X, Song G, Zhai H, Peng Y, Li D, Xu H, Wei X, Cao M, Deng H, Xin Y, Fu X, Yuan L, Yu J, Zhu Z, Zhu L (2009). A transcriptomic analysis of super- hybrid rice LYP9 and its parents.Proc Natl Acad Sci USA 106, 7695-7701.
[37] Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008). Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice.Nat Genet 40, 761-767.
[38] Yu S, Li J, Xu C, Tan Y, Gao Y, Li X, Zhang Q, Maroof MS (1997). Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid.Proc Natl Acad Sci USA 94, 9226-9231.
[39] Zhang Q, Li J, Xue Y, Han B, Deng XW (2008). Rice 2020: a call for an international coordinated effort in rice func- tional genomics.Mol Plant 1, 715-719.
[40] Zhou G, Chen Y, Yao W, Zhang C, Xie W, Hua J, Xing Y, Xiao J, Zhang Q (2012). Genetic composition of yield heterosis in an elite rice hybrid.Proc Natl Acad Sci USA 109, 15847-15852.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 唐中华 于景华 杨逢建 祖元刚. 植物生物碱代谢生物学研究进展[J]. 植物学报, 2003, 20(06): 696 -702 .
[2] 龙春林 李美兰. 西双版纳傣族曼仑村植物遗传资源研究:现状与保护策略[J]. 植物学报, 2006, 23(2): 177 -185 .
[3] 孔海燕 贾桂霞 温跃戈. 钙在植物花发育过程中的作用[J]. 植物学报, 2003, 20(02): 168 -177 .
[4] 陈建三 赵世绪. 水稻84-15细胞胚胎学的研究[J]. 植物学报, 1999, 16(03): 284 -287 .
[5] 周延清, 王婉珅, 王向楠, 段红英. 地黄DNA分子标记与基因功能研究进展[J]. 植物学报, 2015, 50(5): 665 -672 .
[6] 韩也良. 安徽省境内亚热带常绿阔叶林带的北界问题(摘要)[J]. 植物生态学报, 1981, 5(1): 54 -57 .
[7] 李意德, 曾庆波, 吴仲民, 杜志鹄, 周光益, 陈步峰, 张振才, 陈焕强. 尖峰岭热带山地雨林生物量的初步研究[J]. 植物生态学报, 1992, 16(4): 293 -300 .
[8] 夏江宝, 张光灿, 孙景宽, 刘霞. 山杏叶片光合生理参数对土壤水分和光照强度的阈值效应[J]. 植物生态学报, 2011, 35(3): 322 -329 .
[9] 邓联合, 周新成. 加强对湖北五峰县后河林区稀有树种群落的保护[J]. 植物生态学报, 1982, 6(1): 84 .
[10] 江肖洁, 胡艳玲, 韩建秋, 周玉梅. 增温对苔原土壤和典型植物叶片碳、氮、磷化学计量学特征的影响[J]. 植物生态学报, 2014, 38(9): 941 -948 .