植物学报 ›› 2017, Vol. 52 ›› Issue (2): 123-127.doi: 10.11983/CBB16217

• 热点评 •    下一篇

独脚金内酯信号感知揭示配体-受体作用新机制

常金科, 黎家*()   

  1. 兰州大学生命科学学院, 细胞活动与逆境适应教育部重点实验室, 兰州 730000
  • 收稿日期:2016-11-11 接受日期:2017-02-09 出版日期:2017-03-01 发布日期:2017-04-05
  • 通讯作者: 黎家 E-mail:lijia@lzu.edu.cn
  • 作者简介:

    # 共同第一作者

Plants Use an Atypical Strategy to Perceive Strigolactones

Jinke Chang, Jia Li*   

  1. Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
  • Received:2016-11-11 Accepted:2017-02-09 Online:2017-03-01 Published:2017-04-05
  • Contact: Li Jia E-mail:lijia@lzu.edu.cn
  • About author:

    # Co-first authors

摘要:

植物激素在调控细胞与细胞及细胞与环境的相互作用中起着至关重要的作用。作为一种信号分子, 植物激素如何被植物细胞感知一直是植物生物学研究的热点。与底物-酶相互作用的结果不同, 激素分子与受体结合后会触发信号转导, 但激素分子一般不会被受体修饰, 信号转导起始后激素分子通常会从复合体中释放出来被重新利用或降解。近期, 我国科学家通过对独脚金内酯及其受体复合体(AtD14-D3-ASK1)的结构学解析, 发现独脚金内酯的生物活性分子CLIM (covalently linked intermediate molecule)是独脚金内酯被其受体水解后得到的中间分子。研究表明, CLIM与受体AtD14的催化中心以共价键相结合, 进而激活其信号转导。该研究揭示了一种全新的“底物-酶-活性分子-受体”激素识别机制。这种配体-受体作用新机制的发现为植物激素研究开拓了新的视野。

Abstract:

Phytohormones, as signaling molecules, play critical roles in regulating cell-to-cell and cell-to-environment communications. The mechanisms plant cells use to perceive phytohormones remain hot research topics in plant biology. Previous studies indicated that most plant hormones are perceived by non-covalent physical interactions with their corresponding receptors. After signaling pathways are initiated, the ligands usually dissociate with their binding receptors, which can interact with other receptor molecules or go through a degradation pathway. Therefore, ligand-receptor interaction is distinct from substrate-enzyme association. Recently, Xie and colleagues resolved a 3D structure of a strigolactone-induced AtD14-D3-ASK1 receptor complex. Strigolactones could be cleaved into a covalent-linked intermediate molecule in the reaction center of AtD14, the receptor of strigolactones. Further analyses revealed detailed molecular mechanisms of strigolactone-induced ligand-receptor complex formation and subsequent signaling initiation. Such a mechanism has never been reported in plants. These results provide significant insights into our better understanding of cellular signaling in plants.

图1

植物激素的配体-受体相互作用模式(A) 有关植物激素的经典研究认为激素分子(配体)与受体结合后可激活受体的信号转导, 但激素分子自身通常不会被受体修饰或降解; (B) 独脚金内酯被受体D14识别并被降解为中间活性分子CLIM, 且CLIM与D14以共价键相结合, 进而起始独脚金内酯的信号转导"

[1] Akiyama K, Hayashi H (2006). Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots.Ann Bot 97, 925-931.
[2] Akiyama K, Matsuzaki K, Hayashi H (2005). Plant sesqui- terpenes induce hyphal branching in arbuscular mycor- rhizal fungi.Nature 435, 824-827.
[3] Akiyama K, Ogasawara S, Ito S, Hayashi H (2010). Struc- tural requirements of strigolactones for hyphal branching in AM fungi.Plant Cell Physiol 51, 1104-1117.
[4] Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J (2009). d14, a strigolactone- insensitive mutant of rice, shows an accelerated out- growth of tillers.Plant Cell Physiol 50, 1416-1424.
[5] Baldwin IT, Staszak-Kozinski L, Davidson R (1994). Up in smoke: I. Smoke-derived germination cues for postfire annual,Nicotiana attenuata Torr. ex. Watson. J Chem Ecol 20, 2345-2371.
[6] Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966). Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154, 1189-1190.
[7] Cook CE, Whichard LP, Wall M, Egley GH, Coggon P, Luhan PA, McPhail AT (1972). Germination stimulants. II. Structure of strigol, a potent seed germination stimulant for witchweed (Striga lutea). J Am Chem Soc 94, 6198-6199.
[8] Fang X, Chen XY (2017). Branching out.Sci China Life Sci 60, 108-110.
[9] Ferguson BJ, Beveridge CA (2009). Roles for auxin, cytokinin, and strigolactone in regulating shoot branching.Plant Physiol 149, 1929-1944.
[10] Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD (2004). A compound from smoke that promotes seed germination.Science 305, 977.
[11] Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF (2008). Strigolactone inhibition of shoot branching.Nature 455, 189-194.
[12] Guo Y, Zheng Z, La Clair JJ, Chory J, Noel JP (2013). Smoke-derived karrikin perception by the alpha/beta- hydrolase KAI2 from Arabidopsis.Proc Natl Acad Sci USA 110, 8284-8289.
[13] Hamiaux C, Drummond RS, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD, Snowden KC (2012). DAD2 is an alpha/beta hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone.Curr Biol 22, 2032-2036.
[14] Hayward A, Stirnberg P, Beveridge C, Leyser O (2009). Interactions between auxin and strigolactone in shoot branching control.Plant Physiol 151, 400-412.
[15] Hothorn M, Dabi T, Chory J (2011a). Structural basis for cytokinin recognition byArabidopsis thaliana histidine kin- ase 4. Nat Chem Biol 7, 766-768.
[16] Hothorn M, Belkhadir Y, Dreux M, Dabi T, Noel JP, Wilson IA, Chory J (2011b). Structural basis of steroid hormone perception by the receptor kinase BRI1.Nature 474, 467-471.
[17] Jiang L, Liu X, Xiong G, Liu H, Chen F, Wang L, Meng X, Liu G, Yu H, Yuan Y, Yi W, Zhao L, Ma H, He Y, Wu Z, Melcher K, Qian Q, Xu HE, Wang Y, Li J (2013). DWARF53 acts as a repressor of strigolactone signaling in rice.Nature 504, 401-405.
[18] Motomitsu A, Sawa S, Ishida T (2015). Plant peptide hormone signaling.Essays Biochem 58, 115-131.
[19] Murase K, Hirano Y, Sun TP, Hakoshima T (2008). Gib- berellin-induced DELLA recognition by the gibberellin receptor GID1.Nature 456, 459-463.
[20] Nakamura H, Xue YL, Miyakawa T, Hou F, Qin HM, Fukui K, Shi X, Ito E, Ito S, Park SH, Miyauchi Y, Asano A, Totsuka N, Ueda T, Tanokura M, Asami T (2013). Molecular mechanism of strigolactone perception by DWARF14.Nat Commun 4, 2613.
[21] Nelson DC, Scaffidi A, Dun EA, Waters MT, Flematti GR, Dixon KW, Beveridge CA, Ghisalberti EL, Smith SM (2011). F-box protein MAX2 has dual roles in karrikin and strigolactone signaling inArabidopsis thaliana. Proc Natl Acad Sci USA 108, 8897-8902.
[22] Santiago J, Dupeux F, Round A, Antoni R, Park SY, Jamin M, Cutler SR, Rodriguez PL, Marquez JA (2009). The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462, 665-668.
[23] Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010). Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor.Nature 468, 400-405.
[24] Stirnberg P, Furner IJ, Ottoline Leyser HM (2007). MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching.Plant J 50, 80-94.
[25] Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007). Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640-645.
[26] Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008). Inhi- bition of shoot branching by new terpenoid plant hor- mones. Nature 455, 195-200.
[27] Wang L, Wang B, Jiang L, Liu X, Li X, Lu Z, Meng X, Wang Y, Smith SM, Li J (2015). Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-like SMXL repressor proteins for ubiquitination and degradation.Plant Cell 27, 3128-3142.
[28] Waters MT, Nelson DC, Scaffidi A, Flematti GR, Sun YK, Dixon KW, Smith SM (2012). Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis.Development 139, 1285-1295.
[29] Xu J, Zha M, Li Y, Ding Y, Chen L, Ding C, Wang S (2015). The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot bran- ching in rice (Oryza sativa L.). Plant Cell Rep 34, 1647-1662.
[30] Yao R, Ming Z, Yan L, Li S, Wang F, Ma S, Yu C, Yang M, Chen L, Chen L, Li Y, Yan C, Miao D, Sun Z, Yan J, Sun Y, Wang L, Chu J, Fan S, He W, Deng H, Nan F, Li J, Rao Z, Lou Z, Xie D (2016). DWARF14 is a non-cano- nical hormone receptor for strigolactone.Nature 536, 469-473.
[31] Yao R, Wang F, Ming Z, Du X, Chen L, Wang Y, Zhang W, Deng H, Xie D (2017). ShHTL7 is a non-canonical receptor for strigolactones in root parasitic weeds.Cell Res(in press).
[32] Yoneyama K, Awad AA, Xie X, Yoneyama K, Takeuchi Y (2010). Strigolactones as germination stimulants for root parasitic plants.Plant Cell Physiol 51, 1095-1103.
[33] Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Shabek N, Wu F, Mao H, Dong W, Gan L, Ma W, Gao H, Chen J, Yang C, Wang D, Tan J, Zhang X, Guo X, Wang J, Jiang L, Liu X, Chen W, Chu J, Yan C, Ueno K, Ito S, Asami T, Cheng Z, Wang J, Lei C, Zhai H, Wu C, Wang H, Zheng N, Wan J (2013). D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signaling.Nature 504, 406-410.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 朱诚 刘非燕 曾广文. 4PU对萝卜离体子叶衰老的影响[J]. 植物学报, 1997, 14(04): 42 -44 .
[2] 傅弘 池哲儒 常杰 傅承新. 基于人工神经网络的叶脉信息提取——植物活体机器识别研究Ⅰ[J]. 植物学报, 2004, 21(04): 429 -436 .
[3] 李洪燕;郑青松;刘兆普*;李青. 海水胁迫对苦荬菜幼苗生长及生理特性的影响[J]. 植物学报, 2010, 45(01): 73 -78 .
[4] 李军. 红树莓雌雄配子体发育的研究[J]. 植物学报, 1994, 11(专辑): 10 .
[5] 杨家驹 扆铁梅 赵彩云. 中国裸子植物化石木的命名和鉴定[J]. 植物学报, 2000, 17(专辑): 117 -129 .
[6] 刘焱, 邢立静, 李俊华, 戴绍军. 水稻含有B-box锌指结构域的OsBBX25蛋白参与植物对非生物胁迫的响应[J]. 植物学报, 2012, 47(4): 366 -378 .
[7] 朱巧玲, 冷佳奕, 叶庆生. 黑毛石斛和长距石斛的光合特性[J]. 植物学报, 2013, 48(2): 151 -159 .
[8] 王义凤. 东天山山地草原的基本特点[J]. 植物生态学报, 1963, (1): 110 -130 .
[9] 方正, 胡式之. 第一次全国植被分类、分区及制图学术工作会议简报[J]. 植物生态学报, 1981, 5(2): 147 -148 .
[10] 王云龙, 许振柱, 周广胜. 水分胁迫对羊草光合产物分配及其气体交换特征的影响[J]. 植物生态学报, 2004, 28(6): 803 -809 .