植物学报 ›› 2017, Vol. 52 ›› Issue (3): 307-321.doi: 10.11983/CBB16109

• 研究报告 • 上一篇    下一篇

季节放牧下内蒙古温带草原羊草根茎叶功能性状的权衡

潘琰1, 龚吉蕊1,*(), 宝音陶格涛2, 罗亲普1, 翟占伟1, 徐沙1, 王忆慧1, 刘敏1, 杨丽丽1   

  1. 1北京师范大学地理科学学部资源学院, 北京师范大学地理科学学部地表过程与资源生态国家重点实验室, 北京 100875
    2内蒙古大学生命科学学院, 呼和浩特 010021
  • 收稿日期:2016-05-12 接受日期:2016-10-16 出版日期:2017-05-01 发布日期:2017-05-27
  • 通讯作者: 龚吉蕊 E-mail:jrgong@bnu.edu.cn
  • 作者简介:

    # 共同第一作者

  • 基金资助:
    国家自然科学基金(No.41571048)、国家重点基础研究发展计划(No.2014CB138803)和国家重点研发计划(No.2016YFC0500- 502)

Effect of Seasonal Grazing on Trade-off Among Plant Functional Traits in Root, Stem and Leaf of Leymus chinensis in the Temperate Grassland of Inner Mongolia, China

Yan Pan1, Jirui Gong1*, Taogetao Baoyin2, Qinpu Luo1, Zhanwei Zhai1, Sha Xu1, Yihui Wang1, Min Liu1, Lili Yang1   

  1. 1State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Resources Science & Technology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    2College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
  • Received:2016-05-12 Accepted:2016-10-16 Online:2017-05-01 Published:2017-05-27
  • Contact: Gong Jirui E-mail:jrgong@bnu.edu.cn
  • About author:

    # Co-first authors

摘要:

放牧是草地主要利用方式之一, 不同季节放牧通过影响草地功能性状间的权衡从而影响牧后再生及补偿性生长。通过测定内蒙古温带草原优势种羊草(Leymus chinensis)的株高、节间距和分蘖数等软性状及气体交换、抗氧化酶系统和根茎叶渗透调节物质的含量等硬性状, 分析了不同季节放牧处理下羊草功能性状的变化及其权衡关系。结果表明, 3年短期放牧处理下, 类连续放牧(T1)比春季放牧样地(T2)羊草表现出更强的避牧性与耐牧性。类连续放牧与春季放牧样地羊草软性状及光合特性表现出一致性, 6月放牧干扰降低了羊草的净光合速率(Pn), 8月放牧干扰通过增加电子传递速率(ETR)及光系统II (PSII)分配于光化学反应(P)的比值等增大Pn。但春季放牧样地羊草株高较高, 且光合产物较多分配于叶片, 导致大量有机物质被啃食, 不利于牧草再生。而类连续放牧羊草将较多的有机物质分配于根茎, 有利于牧草根系吸水及牧后再生。因此, 3年短期放牧处理下, 类连续放牧更有利于牧草再生及草原的可持续利用。

Abstract:

Grazing represents the main way for utilization of grassland, and different seasonal grazing affects compensatory growth and regrowth by affecting the trade-off among plant functional traits. To understand the trade-off and variation among the ‘soft’ and ‘hard’ traits under different seasonal grazing, we measured soft traits such as plant height, internode length, and tillers and hard traits such as photosynthetic capacity, antioxidant system and substance contents of osmotic adjustment in root, stem and leaf of Leymus chinensis. Compared with spring grazing, under continuous grazing, L. chinensis adopts stronger avoidance and tolerance strategies. The soft traits and some hard traits, such as photosynthetic capacity, chlorophyII fluorescence characteristics and energy partition show the same trend: net photosynthetic rate decreasing in June and increasing in August. However, the plants have higher photosynthetic product in leaf under spring grazing, which is harmful for regrowth, with vast organic matter contents eaten after grazing. However, under continuous grazing, L. chinensis allocates more to stem and root, which is conducive to uptake water from soil and regrow by using the remaining organic matter. Thus, under three-year grazing, continuous grazing is better for regrowth of L. chinensis and sustainable for grassland.

图1

2014年研究区的月降水量和月平均气温"

表1

3种样地的土壤特性"

Treatments OM
(g∙kg-1)
TN
(g∙kg-1)
TP
(g∙kg-1)
AP
(mg∙kg-1)
T0 19.75 1.50 0.29 2.40
T1 18.85 1.38 0.28 2.56
T2 14.05 1.24 0.30 2.31

表2

3种样地群落特性(平均值±标准误, n=9)"

Community characteristics T0 T1 T2
Aboveground biomass (g∙m-2) 135.83±6.79 a 31.56±2.47 b 55.62±5.20 c
Standing litter (g∙m-2) 63.89±10.27 a 3.78±1.60 b 1.23±0.32 b
Litter (g∙m-2) 61.96±4.09 a 12.44±1.60 b 10.10±2.41 b
Richness 5.89±0.72 a 9.00±0.75 b 7.78±0.43 b

图2

不同季节放牧下羊草的软性状(平均值±标准误)T0: 围封样地; T1: 连续放牧样地; T2: 春季放牧样地。不同处理间植物软性状的差异(LSD检验, P<0.05), 6月用大写字母表示, 8月用小写字母表示。"

图3

不同季节放牧下羊草的光合特性和叶片水势(平均值±标准误)T0: 围封样地; T1: 连续放牧样地; T2: 春季放牧样地; Pn: 净光合速率; Ci: 胞间CO2浓度; gs: 气孔导度; Tr: 蒸腾速率; WUE: 水分利用效率; ψ: 叶片水势。羊草不同处理间的差异(LSD检验, P<0.05), 6月用大写字母表示, 8月用小写字母表示。"

图4

不同季节放牧下羊草的叶绿素荧光特性(平均值±标准误)T0: 围封样地; T1: 连续放牧样地; T2: 春季放牧样地; Fv/Fm: PSII最大光化学效率; Fvʹ/Fmʹ: PSII激发能捕获效率; ΦPSII: 实际光化学效率; ETR: 电子传递效率; qp: 光化学猝灭系数; NPQ: 非光化学猝灭系数。不同处理下羊草叶绿素荧光特性的差异(LSD检验, P<0.05), 6月用大写字母表示, 8月用小写字母表示。"

图5

不同季节放牧下羊草的能量分配P: 光化学反应; D: 热耗散; E: 过剩能量"

图6

不同季节放牧下羊草丙二醛含量及抗氧化酶活性(平均值± 标准误)T0: 围封样地; T1: 连续放牧样地; T2: 春季放牧样地; MDA: 丙二醛; SOD: 超氧化物歧化酶; CAT: 过氧化氢酶。羊草不同处理间的差异(LSD检验, P<0.05), 6月用大写字母表示, 8月用小写字母表示。"

表3

不同季节放牧下羊草渗透调节物质的含量(平均值±标准误)"

June August
T0 T1 T2 T0 T1 T2
Soluble sugar
(mg∙g-1)
Leaf 25.60±1.19 Aa 6.61±0.05 Ba 20.24±2.29 Ca 25.87±0.55 Aa 21.38±2.11 ABa 19.22±3.41 Ba
Stem 18.72±4.52 Ab 23.56±0.60 Bb 17.75±0.96 Aa 49.27±0.76 Ab 30.82±0.69 Bb 26.93±2.04 Bb
Root 11.42±0.68 Ac 7.37±0.64 Aa 6.87±0.87 Ab 23.45±0.55 Aa 11.12±0.33 Bc 5.86±0.33 Cc
Soluble
protein
(mg∙g-1)
Leaf 0.97±0.07 Aa 1.44±0.12 Bb 2.25±0.11 Ca 1.37±0.06 Aa 0.34±0.06 Ba 0.49±0.01 Ba
Stem 0.64±0.01 Aa 1.09±0.08 Bb 0.78±0.01 Ab 0.67±0.00 ABb 0.89±0.09 Ab 0.35±0.08 Ba
Root 1.17±0.18 Aa 1.96±0.05 Bb 0.59±0.02 Cb 7.11±0.12 Ac 6.53±0.12 Bc 6.20±0.41 Bb
Proline
(μg∙g-1)
Leaf 18.64±0.54 Aa 16.71±0.48 Aa 24.18±0.70 Ba 26.73±0.77 Aa 7.30±0.21 Ba 15.73±0.89 Ca
Stem 9.79±0.28 Ab 13.55±0.39 Bb 8.44±0.24 Cb 24.72±1.84 Aa 55.38±1.60 Bb 35.91±1.43 Cb
Root 5.91±0.17 Ac 11.33±0.33 Bc 3.79±0.11 Cc 72.38±2.09 Ab 24.27±0.70 Bc 16.69±0.48 Ca

图7

不同季节放牧下羊草功能性状间的主成分分析(PCA)T0: 围封样地; T1: 连续放牧样地; T2: 春季放牧样地; PH: 株高; IL: 节间距; TN: 分蘖数; SLA: 比叶面积; Pn: 净光合速率; P: 光化学反应能量; D: 热耗散能量; WUE: 水分利用效率; LSSC: 叶可溶性糖含量; SSSC: 茎可溶性糖含量; RSSC: 根可溶性糖含量; LSPC: 叶可溶性蛋白含量; SSPC: 茎可溶性蛋白含量; RSPC: 根可溶性蛋白含量; LPC: 叶脯氨酸含量; SPC: 茎脯氨酸含量; RPC: 根脯氨酸含量; MDA: 丙二醛含量; SOD: 超氧化物歧化酶活性; CAT: 过氧化氢酶活性"

[1] 敖敦高娃, 宝音陶格涛 (2015). 不同时期放牧对典型草原群落地上生产力的影响. 中国草地学报 37, 28-34.
[2] 白永飞, 徐志信 (1994). 典型草原9种牧草生长发育规律的研究. 中国草地学报 6, 21-27.
[3] 白永飞, 许志信, 段淳清, 李德新 (1996). 典型草原主要牧草植株贮藏碳水化合物分布部位的研究. 中国草地学报 1, 7-9.
[4] 陈思羽, 刘鹏, 朱末, 夏冬冬, 李亮, 徐克章, 陈展宇, 张治安 (2016). 大豆植株不同冠层种子活力及其萌发中抗氧化酶活性. 植物学报 51, 24-30.
[5] 陈莹婷, 许振柱 (2014). 植物叶经济谱的研究进展. 植物生态学报 38, 1135-1153.
[6] 侯向阳, 徐海红 (2010). 不同放牧制度下短花针茅荒漠草原碳平衡研究. 中国农业科学 44, 50-57.
[7] 贾永霞, 孙锦, 王丽萍, 束胜, 郭世荣 (2011). 低氧胁迫下黄瓜植株热耗散途径. 应用生态学报 22, 707-712.
[8] 李辉, 张光灿, 谢会成, 许景伟, 李传荣, 孙居文 (2016). 苯酚废水对垂柳叶片光合生理参数的影响. 植物学报 51, 31-39.
[9] 李建龙, 许鹏 (1991). 草地适应性利用制度设计的探讨. 草业科学 8, 67-69.
[10] 李勤奋, 韩国栋, 敖特根, 卫志军 (2004). 划区轮牧中不同放牧利用时间对草地植被的影响. 生态学杂志 50, 7-10.
[11] 李西良, 侯向阳, 吴新宏, 萨茹拉, 纪磊, 陈海军, 刘志英, 丁勇 (2014). 草甸草原羊草茎叶功能性状对长期过度放牧的可塑性响应. 植物生态学报 38, 440-451.
[12] 李西良, 刘志英, 侯向阳, 吴新宏, 王珍, 胡静, 武自念 (2015). 放牧对草原植物功能性状及其权衡关系的调控. 植物学报 2, 159-170.
[13] 厉广辉, 万勇善, 刘风珍, 张昆 (2014). 苗期干旱及复水条件下不同花生品种的光合特性. 植物生态学报 38, 729-739.
[14] 刘浩荣, 宋海星, 刘代平, 官春云, 刘强, 陈社员 (2007). 油菜茎叶可溶性糖与游离氨基酸含量的动态变化. 西北农业学报 16, 123-126.
[15] 单立山, 李毅, 石万里, 杨彩红 (2015). 土壤水分胁迫对红砂幼苗生长和渗透调节物质的影响. 水土保持通报 35, 106-109.
[16] 王炜, 梁存柱, 刘钟龄, 郝敦元 (2000). 草原群落退化与恢复演替中的植物个体行为分析. 植物生态学报 24, 268-274.
[17] 王学奎 (2006). 植物生理生化实验原理和技术(第2版). 北京: 高等教育出版社. pp. 202-204.
[18] 许大全 (2013). 光合作用学. 北京: 科学出版社. pp. 93-95.
[19] 晏欣, 龚吉蕊, 张梓瑜, 黄永梅, 安然, 祁瑜, 刘敏 (2013). 狼针草光合特性对放牧干扰的响应. 植物生态学报 37, 530-541.
[20] 尹本丰, 张元明 (2015). 冻融过程对荒漠区不同微生境下齿肋赤藓渗透调节物含量和抗氧化酶活力的影响. 植物生态学报 39, 517-529.
[21] 尹丽, 刘永安, 谢财永, 江雪, 王永杰, 李银华, 颜震, 胡庭兴 (2012). 干旱胁迫与施氮对麻疯树幼苗渗透调节物质积累的影响. 应用生态学报 23, 632-638.
[22] 张大勇 (2004). 植物生活史进化与繁殖生态学. 北京: 科学出版社.
[23] 张仁和, 郑友军, 马国胜, 张兴华, 路海东, 史俊通, 薛吉全 (2011). 干旱胁迫对玉米苗期叶片光合作用和保护酶的影响. 生态学报 31, 1303-1311.
[24] 赵康, 宝音陶格涛 (2014). 季节性放牧利用对典型草原群落生产力的影响. 中国草地学报 36, 109-115.
[25] Adler PB, Milchunas DG, Sala OE, Burke IC, Lauenroth WK (2005). Plant traits and ecosystem grazing effects: comparison of US sagebrush steppe and Patagonian step- pe.Ecol Appl 15, 774-792.
[26] An H, Li GQ (2014). Differential effects of grazing on plant functional traits in the desert grassland.Pol J Ecol 62, 239-251.
[27] Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland.Nature 431, 181-184.
[28] Bajji M, Lutts S, Kinet JM (2001). Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum) cultivars performing differently in arid conditions. Plant Sci 160, 669-681.
[29] Barger NN, Ojima DS, Belnap J, Wang SP, Wang YF, Chen Z (2004). Changes in plant functional groups, litter quality, and soil carbon and nitrogen mineralization with sheep grazing in an Inner Mongolian grassland.Rangeland Ecol Manag 57, 613-619.
[30] Bates LS, Waldren RP, Teare ID (1973). Rapid determination of free proline for water stress studies.Plant Soil 39, 205-207.
[31] Bencze S, Bamberger Z, Janda T, Balla K, Bedő Z, Veisz O (2011). Drought tolerance in cereals in terms of water retention, photosynthesis and antioxidant enzyme activities.Cent Eur J Biol 6, 376-387.
[32] Bowler C, Montagu MV, Inze D (1992). Superoxide dismutase and stress tolerance.Annu Rev Plant Biol 43, 83-116.
[33] Bradford MM, Williams WL (1977). Protein-assay reagent and method. USA 05/694668. 1977-05-17.
[34] Briske DD (1996). Strategies of plant survival in grazed systems: a functional interpretation. In: The Ecology and Management of Grazing Systems. Wallingford: CAB International. pp. 37-67.
[35] Bryant JP, Klein DR (1983). Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40, 357-368.
[36] Catoni R, Granata MU, Sartori F, Varone L, Gratani L (2015). Corylus avellana responsiveness to light variations: morphological, anatomical, and physiological leaf trait plasticity.Photosynthetica 53, 35-46.
[37] Chen SP, Bai YF, Lin GH, Liang Y, Han XG (2005). Effects of grazing on photosynthetic characteristics of major step- pe species in the Xilin River Basin, Inner Mongolia, China.Photosynthetica 43, 559-565.
[38] Christine HF, Granham N (2000). Oxygen processing in photosynthesis: regulation and signaling. New Phytol 146, 359-388.
[39] Clairborne A (1985). Catalase activity. In: Greenwald RA, ed. Handbook of Methods for Oxygen Radical Research. Boca Raton: CRC Press. pp. 283-284.
[40] Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Pausas JG (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide.Aust J Bot 51, 335-380.
[41] Cosgrove J, Borowitzka MA (2010). Chlorophyll fluorescence terminology: an introduction. Berlin: Springer Neth- erlands. pp.11-12.
[42] Demmig-Adams B, AdamsIII WW, Barker DH, Logan BA, Bowling DR, Verhoeven AS (1996). Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plantarum 98, 253-264.
[43] Dhindsa RS, Matowe W (1981). Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation.J Exp Bot 32, 79-91.
[44] Díaz S, Noy-Meir I, Cabido M (2001). Can grazing response of herbaceous plants be predicted from simple vegetative traits.J Appl Ecol 38, 497-508.
[45] Donaghy DJ, Turner LR, Lane PA, Rawnsley RP (2007). Patterns of leaf and root regrowth, and allocation of water-soluble carbohydrate reserves following defoliation of plants of prairie grass (Bromus willdenowii Kunth.). Grass Forage Sci 62, 497-506.
[46] Donald DD, John CB (1984). Impacts of grazing intensity and specialed grazing systems on the use and value of rangeland-summary and recommendations. In: Developing Strategies for Rangeland Management. Colorodo: Westview Press. pp. 880-882.
[47] Earl HJ, Tollenaar M (1999). Using chlorophyII fluorometry to compare photosynthetic performance of commercial maize (Zea mays L.) hybrids in the fields in the field. Field Crop Res 61, 201-210.
[48] Fahnestock JT, Detling JK (2000). Morphological and phy- siological responses of perennial grasses to long-term grazing in the Pryor Mountains, Montana. Am Midl Nat 143, 312-320.
[49] Farquhar GD, Sharkey TD (1982). Stomatal conductance and photosynthesis.Annu Rev Plant Physiol 33, 317-345.
[50] Foyer CH, Descourvires P, Kunert KJ (1994). Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ 17, 507-523.
[51] Funk JL, Cornwell WK (2013). Leaf traits within communities: context may affect the mapping of traits to function.Ecology 94, 1893-1897.
[52] Giannopolitis CN, Ries SK (1977). Superoxide dismutase 1. Occurrence in higher plants.Plant Physiol 59, 309-314.
[53] Guo X, Wang RQ, Chang RY (2014). Effects of nitrogen addition on growth and photosynthetic characteristics of Acer truncatum seedlings. Dendrobiology 72, 151-161.
[54] He Y, Zhu ZJ, Yang J, Ni XL, Zhu B (2009). Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity.Environ Exp Bot 66, 270-278.
[55] Klimešová J, Latzel V, de Bello F, van Groenendael JM (2008). Plant functional traits in studies of vegetation changes in response to grazing and mowing: towards a use of more specific traits.Preslia 80, 245-253.
[56] Larcher W (2003). Carbon utilization and dry matter production. In: Physiological Plant Ecology, 4th edn. Heidelberg: Springer. pp. 71-72.
[57] Lavorel S (2013). Plant functional effects on ecosystem services.J Ecol 101, 4-8.
[58] Li FM, Guo AH, Wei H (1999). Effects of clear plastic film mulch on yield of spring wheat.Field Crop Res 63, 79-86.
[59] Li SY, Verburg PH, Lü SH, Wu JL, Li XB (2012). Spatial analysis of the driving factors of grassland degradation under conditions of climate change and intensive use in Inner Mongolia, China.Reg Environ Change 12, 461-474.
[60] Liang EY, Wang YF, Xu Y, Liu B, Shao XM (2010). Growth variation in Abies georgei var. smithii along altitudinal gradients in the Sygera Mountains, southeastern Tibetan. Trees 24, 363-373.
[61] Matysik J, Alia BB, Mohanty P (2002). Molecular mechanisms of quenching of reaction oxygen species by proline under stress in plants. Curr Sci 82, 525-532.
[62] Maxwell K, Johnson GN (2000). Chlorophyll fluorescence —a practical guide.J Exp Bot 51, 659-668.
[63] McCormick JI, Virgona JM, Kirkegaard JA (2013). Regrowth of spring canola (Brassica napus) after defoliation. Plant Soil 372, 655-668.
[64] Mooney KA, Halitschke R, Kessler A, Agrawal AA (2010). Evolutionary trade-offs in plants mediate the strength of trophic cascades.Science 327, 1642-1644.
[65] Navas ML, Roumet C, Bellmann A, Laurent G, Garnier E (2010). Suites of plant traits in species from different stages of a Mediterranean secondary succession.Plant Biol 12, 183-196.
[66] Ogawa A, Yamauchi A (2006). Root osmotic adjustment under osmotic stress in maize seedlings. 2. Mode of accumulation of several solutes for osmotic adjustment in the root.Plant Prod Sci 9, 39-46.
[67] Ort DR (2001). When there is too much light.Plant Physiol 125, 29-32.
[68] Peng Y, Jiang GM, Liu XH, Niu SL, Liu MZ, Biswas DK (2007). Photosynthesis, transpiration and water use efficiency of four plant species with grazing intensities in hunshandak sandland, China.J Arid Environ 70, 304-315.
[69] Poot P, Lambers H (2003). Growth responses to waterlogging and drainage of woody Hakea (Proteaceae) seedlings, originating from contrasting habitats in south-wes- tern Australia.Plant Soil 253, 57-70.
[70] Shahba MA, Abbas MS (2014). Drought resistance strategies of seashore paspalum cultivars at different mowing heights.Hortscience 49, 221-229.
[71] Smith MD, Knapp AK (2003). Dominant species maintain ecosystem function with non-random species loss.Ecol Lett 6, 509-517.
[72] Staalduinen MVA, Anten NPR (2005). Differences in the compensatory growth of two co-occurring grass species in relation to water availability.Oecologia 146, 190-199.
[73] Stearns SC (1992). The evolution of life histories. New York: Oxford University Press.
[74] Sun J, Jia YX, Guo SR, Li J, Shu S (2010). Resistance of spinach plants to seawater stress is correlated with higher activity of xanthophyll cycle and better maintenance of chlorophyll metabolism.Photosynthetica 48, 567-579.
[75] Tong C, Wu J, Yong S, Yang J, Yong W (2004). A landscapescale assessment of steppe degradation in the Xilin River Basin, Inner Mongolia, China.J Arid Environ 59, 133-149.
[76] Vesk PA, Leishman MR, Westoby M (2004). Simple traits do not predict grazing response in Australian dry shrublands and woodlands.J Appl Ecol 41, 22-31.
[77] Wang SP, Wang YF (2001). Study on over-compensation growth of Cleistogens squarrosa population in Inner Mon- golia steppe. Acta Bot Sin 43, 413-418.
[78] Westoby M (1998). A leaf-height-seed (LHS) plant ecology strategy scheme.Plant Soil 199, 213-227.
[79] Whitman T, Aarssen LW (2010). The leaf size/number trade-off in herbaceous angiosperms.J Plant Ecol 3, 49-58.
[80] Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum.Nature 428, 821-827.
[81] Xiu H (2015). Changes of protective enzyme activity and MDA content in leaves of Agropyron cristatum under gra- zing stress. Agr Sci Technol 16, 22-24.
[82] Xu MY, Xie F, Wang K (2014). Response of vegetation and soil carbon and nitrogen storage to grazing intensity in semi-arid grasslands in the agro-pastoral zone of Northern China. PLoS One 9, e96604.
[83] Yan L, Zhou G, Zhang F (2013). Effects of different grazing intensities on grassland production in China: a meta- analysis.PLoS One 8, e81466.
[84] Zai XM, Zhu SN, Qin P, Wang XY, Che L, Luo FX (2012). Effect of glomus mosseae on chlorophyll content, chlorophyll fluorescence parameters, and chloroplast ultrastructure of beach plum (Prunus maritima) under NaCl stress. Photosynthetica 50, 323-328.
[85] Zhang ZP, Miao MM, Wang CL (2015). Effects of ala on photosynthesis, antioxidant enzyme activity, and gene expression, and regulation of proline accumulation in tomato seedlings under NaCl stress.J Plant Growth Regul 34, 637-650.
[86] Zhao W, Chen SP, Han XG, Lin GH (2009). Effects of long-term grazing on the morphological and functional traits of Leymus chinensis in the semiarid grassland of Inner Mongolia, China. Ecol Res 24, 99-108.
[87] Zheng SX, Lan ZC, Li WH, Shao RX, Shan YM, Wan HW, Taube F, Bai YF (2011). Differential responses of plant functional trait to grazing between two contrasting dominant C3 and C4 species in a typical steppe of Inner Mongolia, China. Plant Soil 340, 141-155.
[88] Zhou RL, Zhao HL (2004). Seasonal pattern of antioxidant enzyme system in the roots of perennial forage grasses grown in Alpine habitat, related to freezing tolerance.Phy- siol Plantarum 121, 399-408.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡适宜. 植物的受精作用 第四讲 受精的障碍——不亲和性[J]. 植物学报, 1984, 2(23): 93 -99 .
[2] 蒋高明. 退化生态系统的恢复与管理——兼论自然保护区在其中发挥的作用[J]. 植物学报, 2003, 20(03): 373 -382 .
[3] 罗立新 崔克明 杨海东 李正理 李举怀. 杜仲形成层恢复活动和过氧化物酶同工酶酶谱的变化[J]. 植物学报, 1994, 11(专辑): 65 .
[4] 张孝英 杨世杰. 胞间连丝与大分子物质的胞间转移[J]. 植物学报, 1999, 16(02): 150 -156 .
[5] 陈璋. 拟南芥:植物分子生物学研究的模式物种[J]. 植物学报, 1994, 11(01): 6 -11 .
[6] 蔡雪. 花粉粒和花粉管中的微管骨架[J]. 植物学报, 1996, 13(专辑): 13 -16 .
[7] 雷晓勇 黄蕾 田梅生 胡小松 戴尧仁. 苹果果肉中抗氰氧化酶(AOX)的分离鉴定[J]. 植物学报, 2002, 19(06): 739 -742 .
[8] 姚春鹏 李娜. 植物激素脱落酸受体的研究进展[J]. 植物学报, 2006, 23(6): 718 -724 .
[9] 王丽, 王芹芹, 王幼群. 蚕豆叶片小叶脉不同发育时期ATP酶和酸性磷酸酶的细胞化学超微结构定位[J]. 植物学报, 2014, 49(1): 78 -86 .
[10] 邱栋梁, 刘星辉, 郭素枝. 模拟酸雨对龙眼叶片气体交换和叶绿素a荧光参数的影响(英文)[J]. 植物生态学报, 2002, 26(4): 441 -446 .