植物学报 ›› 2016, Vol. 51 ›› Issue (5): 586-593.doi: 10.11983/CBB15223

• 研究报告 • 上一篇    下一篇

拟南芥IAA酰胺合成酶GH3-6负调控干旱和盐胁迫的反应

刘晓东1, 王若仲2, 焦彬彬3, 代培红1, 李月1,*()   

  1. 1新疆农业大学农学院, 乌鲁木齐 830052
    2湖南农业大学植物激素与生长发育湖南省重点实验室, 长沙 410128
    3上海出入境检验检疫局, 上海 200135
  • 收稿日期:2015-12-22 接受日期:2016-04-26 出版日期:2016-09-01 发布日期:2016-09-27
  • 通讯作者: 李月 E-mail:liyue6905@126.com
  • 作者简介:

    # 共同第一作者

  • 基金资助:
    国家自然科学基金(No.31470289)

Indole Acetic Acid-Amido Synthetase GH3-6 Negatively Regulates Response to Drought and Salt in Arabidopsis

Xiaodong Liu1, Ruozhong Wang2, Binbin Jiao3, Peihong Dai1, Yue Li1*   

  1. 1College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
    2Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
    3Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai 200135, China
  • Received:2015-12-22 Accepted:2016-04-26 Online:2016-09-01 Published:2016-09-27
  • Contact: Li Yue E-mail:liyue6905@126.com
  • About author:

    # Co-first authors

摘要:

生长素是一种重要的植物激素, 几乎参与了植物所有的生命活动过程。GH3-6具有IAA酰胺合成酶活性, 催化氨基酸与IAA形成IAA的氨基轭合物, 发挥暂时或永久灭活IAA的作用。该文探讨了GH3-6基因在拟南芥(Arabidopsis thaliana)逆境适应过程中的功能。结果显示GH3-6基因受干旱、ABA和高盐的诱导表达。与野生型相比, GH3-6基因过表达突变体dfl1-D对干旱的抗性明显减弱, 叶片失水速率更快。在抗盐方面, dfl1-D也显著弱于野生型。在3种逆境(干旱、ABA和高盐)胁迫下, GH3-6基因的高表达抑制了逆境响应基因RD22KIN1RD29ADREB1A的表达。而且在干旱胁迫下, dfl1-D中ABA的含量明显低于野生型。研究结果证明, 高表达GH3-6基因负调控拟南芥对逆境的抗性。

Abstract:

Auxin is an important phytohormone involved in almost all aspects of plant life. GH3-6 encodes a protein possessing adenylation activity that can conjugate amino acid to indole acetic acid (IAA), which leads to temporarily or permanently inactive IAA. Here we investigated the role of GH3-6 in plant stress adaptation. The expression of GH3-6 was induced by drought, abscisic acid (ABA) and high salt. Compared with the wild type, transgenic plants with GH3-6 overexpression (named dfl1-D) were sensitive to drought and lost more water from detached rosette leaves. dfl1-D also exhibited hyporesistance to high salt. In addition, overexpression of GH3-6 inhibited the expression of stress-responsive genes, including RD22, KIN1, RD29A and DREB1A. The content of ABA was lower in dfl1-D than the wild type under drought treatment. Overexpression of GH3-6 negatively regulates stress resistance in Arabidopsis.

表1

本研究所用引物"

Primer name Primer sequence (5'-3')
ACTIN2F GCACCCTGTTCTTCTTACCG
ACTIN2R AACCCTCGTAGATTGGCACA
NCED3F CGGACGGAACTAAATCAC
NCED3R CATACAGGACCCTATCACG
RD22F TACAAAATCGCGGCGGCTGGG
RD22R AGCGGAACCGCGTAGACGGT
KIN1F GCCTTCCAAGCCGGTCAGAC
KIN1R TCCCGCCTGTTGTGCTCCAG
RD29AF ACGGCGGTTTAGGAGCTCCGTT
RD29AR TCTCCGTCAAATCCCGTCGGCA
DREB1AF CCAAGAAACCGGCGGGTCGT
DREB1AR GGGCTAAAGCGGCAACGTCG

图1

拟南芥GH3-6基因受干旱、ABA和盐诱导表达并且在dfl1-D突变体中过量表达 (A) 半定量RT-PCR检测生长20天的Ler野生型(WT)中GH3-6基因受干旱、ABA和盐诱导表达的情况; (B) 半定量RT-PCR检测生长20天的dfl1-D突变体中GH3-6基因的表达"

图2

拟南芥GH3-6基因过表达突变体dfl1-D对干旱敏感 将生长20天的拟南芥进行断水干旱处理, 25天进行复水处理。(A) 正常生长条件下的植株表型; (B) 复水2天后的植株表型; (C) 复水2天后植株的存活率, **表示差异极显著(P<0.01); (D) 生长30天的拟南芥莲座叶失水速率"

图3

拟南芥GH3-6基因过表达突变体dfl1-D对高盐胁迫抗性减弱 生长7天的拟南芥幼苗进行高盐(150 mmol·L-1 NaCl)胁迫10天。(A) 高盐处理10天后的拟南芥表型; (B) 高盐处理10天后的幼苗存活率, **表示差异极显著(P<0.01)"

图4

拟南芥GH3-6基因过表达抑制逆境胁迫响应基因的表达"

图5

拟南芥GH3-6基因过表达抑制ABA的合成 将生长30天的拟南芥莲座叶干旱处理0和3小时后用于ABA含量的测定。与对应0小时的差异显著性比较(* 表示P<0.05水平差异显著, ** 表示P<0.01水平差异极显著)。"

1 王若仲, 萧浪涛, 蔺万煌, 曹庸, 卜晓英 (2002). 亚种间杂交稻内源激素的高效液相色谱测定法. 色谱 20, 148-150.
2 Delker C, Raschke A, Quint M (2008). Auxin dynamics: the dazzling complexity of a small molecule’s message.Planta 227, 929-941.
3 Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X, Wang S (2008). Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice.Plant Cell 20, 228-240.
4 Domingo C, Andrés F, Tharreau D, Iglesias DJ, Talón M (2009). Constitutive expression of OsGH3.1 reduces auxin content and enhances defense response and resistance to a fungal pathogen in rice.Mol Plant Microbe Interact 22, 201-210.
5 Du H, Wu N, Fu J, Wang S, Li X, Xiao J, Xiong L (2012). A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice.J Exp Bot 63, 6467-6480.
6 Feng S, Yue R, Tao S, Yang Y, Zhang L, Xu M, Wang H, Shen C (2015). Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses.J Integr Plant Biol 57, 783-795.
7 Fu J, Liu H, Li Y, Yu H, Li X, Xiao J, Wang S (2011). Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice.Plant Physiol 155, 589-602.
8 Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001). Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis.Plant J 27, 325-333.
9 Ke Q, Wang Z, Ji CY, Jeong JC, Lee HS, Li H, Xu B, Deng X, Kwak SS (2015). Transgenic poplar expressing Arabidopsis YUCCA6 exhibits auxin-overproduction phenotypes and increased tolerance to abiotic stress.Plant Physiol Biochem 94, 19-27.
10 Khan S, Stone J (2007). Arabidopsis thaliana GH3.9 influences primary root growth.Planta 226, 21-34.
11 Kim JI, Baek D, Park HC, Chun HJ, Oh DH, Lee MK, Cha JY, Kim WY, Kim MC, Chung WS, Bohnert HJ, Lee SY, Bressan RA, Lee SW, Yun DJ (2013). Overexpression of Arabidopsis YUCCA6 in potato results in high-auxin developmental phenotypes and enhanced resistance to water deficit.Mol Plant 6, 337-349.
12 Kraft M, Kuglitsch R, Kwiatkowski J, Frank M, Gross- mann K (2007). Indole-3-acetic acid and auxin herbicides up-regulate 9-cis-epoxycarotenoid dioxygenase gene expression and abscisic acid accumulation in cleavers (Galium aparine): interaction with ethylene.J Exp Bot 58, 1497-1503.
13 Nakazawa M, Yabe N, Ichikawa T, Yamamoto YY, Yoshizumi T, Hasunuma K, Matsui M (2001). DFL1, an auxin responsive GH3 gene homologue, negatively regu- lates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length.Plant J 25, 213-221.
14 Okrent RA, Wildermuth MC (2011). Evolutionary history of the GH3 family of acyl adenylases in rosids.Plant Mol Biol 76, 489-505.
15 Pandey GK, Cheong YH, Kim KN, Grant JJ, Li L, Hung W, D'Angelo C, Weinl S, Kudla J, Luan S (2004). The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis.Plant Cell 16, 1912-1924.
16 Park JE, Park JY, Kim YS, Staswick PE, Jeon J, Yun J, Kim SY, Kim J, Lee YH, Park CM (2007). GH3-medi- ated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis.J Biol Chem 282, 10036-10046.
17 Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression.Biochem Biophys Res Commun 290, 998-1009.
18 Shi H, Chen L, Ye T, Liu X, Ding K, Chan Z (2014). Modulation of auxin content in Arabidopsis confers improved drought stress resistance.Plant Physiol Biochem 82, 209-217.
19 Singh VK, Jain M, Garg R (2015). Genome-wide analysis and expression profiling suggest diverse roles of GH3 genes during development and abiotic stress responses in legumes.Front Plant Sci 5, 789.
20 Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005). Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid.Plant Cell 17, 616-627.
21 Staswick PE, Tiryaki I, Rowe ML (2002). Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the fire?y luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation.Plant Cell 14, 1405-1415.
22 Takase T, Nakazawa M, Ishikawa A, Kawashima M, Ichikawa T, Takahashi N, Shimada H, Manabe K, Matsui M (2004). ydk1-D, an auxin-responsive GH3 mutant that is involved in hypocotyl and root elongation.Plant J 37, 471-483.
23 Terol J, Domingo C, Talón M (2006). The GH3 family in plants: genome wide analysis in rice and evolutionary history based on EST analysis.Gene 371, 279-290.
24 Urano K, Maruyama K, Ogata Y, Morishita Y, Takeda M, Sakurai N, Suzuki H, Saito K, Shibata D, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2009). Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics.Plant J 57, 1065-1078.
25 Woodward AW, Bartel B (2005). Auxin: regulation, action, and interaction.Annu Bot 95, 707-735.
26 Xia K, Wang R, Ou X, Fang Z, Tian C, Duan J, Wang Y, Zhang M (2012). OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice.PLoS One 7, e30039.
27 Xiong L, Ishitani M, Lee H, Zhu JK (2001). The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress- responsive gene expression.Plant Cell 13, 2063-2083.
28 Xiong L, Zhu JK (2013). Regulation of abscisic acid biosynthesis.Plant Physiol 133, 29-36.
29 Zhang SW, Li CH, Cao J, Zhang YC, Zhang SQ, Xia YF, Sun DY, Sun Y (2009). Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3.13 activation.Plant Physiol 151, 1889-1901.
30 Zhang Z, Li Q, Li Z, Staswick PE, Wang M, Zhu Y, He Z (2007). Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction.Plant Physiol 145, 450-464.
31 Zhao Y (2010). Auxin biosynthesis and its role in plant development.Annu Rev Plant Biol 61, 49-64.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张振珏. 香子兰落花落果的某些规律[J]. 植物学报, 1985, 3(05): 36 -37 .
[2] 高潜;刘玉瑛;费一楠;李大朋;刘祥林*. 拟南芥根的辐射形态相关基因SHORT-ROOT 研究进展[J]. 植物学报, 2008, 25(03): 363 -372 .
[3] 王宝山 赵可夫 邹琦. 作物耐盐机理研究进展及提高作物抗盐性的对策[J]. 植物学报, 1997, 14(增刊): 25 -30 .
[4] 贺锋 吴振斌. 水生植物在污水处理和水质改善中的应用[J]. 植物学报, 2003, 20(06): 641 -647 .
[5] 贾虎森 李德全 韩亚琴. 叶绿体中的细胞色素b-559[J]. 植物学报, 2001, 18(02): 158 -162 .
[6] 孙卫;李崇晖;王亮生;戴思兰*. 菊花不同花色品种中花青素苷代谢分析[J]. 植物学报, 2010, 45(03): 327 -336 .
[7] 李红 邝炎华. 植物磷胁迫蛋白和铁胁迫蛋白研究进展[J]. 植物学报, 2001, 18(05): 571 -576 .
[8] 张大勇, 姜新华. 对于作物生产的生态学思考[J]. 植物生态学报, 2000, 24(3): 383 -384 .
[9] 郭继勋, 祝廷成. 羊草草地枯枝落叶与分解者之间能量流动的研究[J]. 植物生态学报, 1992, 16(2): 143 -148 .
[10] 阎秀峰. 植物次生代谢生态学[J]. 植物生态学报, 2001, 25(5): 639 -640 .