SPECIAL TOPICS

Secondary Metabolites of Syringa and the Linking with Phylogenetic Evolution and Geographical Distributions

Expand
  • 1Shandong University of Traditional Chinese Medicine, Jinan 250300, China
    2Key Laboratory of Chinese Medicine Resources in Colleges and Universities of Shandong Province, Jinan 250355, China
    3Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China 4Horticulture College, Hainan University, Haikou 570228, China

Received date: 2020-11-11

  Accepted date: 2021-04-19

  Online published: 2021-04-21

Abstract

Secondary metabolites of plants induced by environmental factors are highly variable, but the given metabolic pathways may have some phylogenetic implications. Due to the difficulty in complete and systematic collections in certain plant groups, the research on the correlation between secondary metabolites and phylogeny is limited. Based on the published papers, 377 secondary metabolites in the roots, stems, leaves and flowers of Syringa were collected, which mainly derived from the mevalonic acid pathway, deoxyxylulose-5-P pathway and shikimic acid pathway. After superimposing phylogenetic background, we found that dominance of a given type of secondary metabolites was high for the firstly diverged series, and the dominance declined for subsequently diverged series with the increase of chemical diversity. Phenylpropanoids and iridoids/secoiridoids were phylogenetically conserved. After superimposing geographical distributions, we found that some local species which were lately diverged had more diverse secondary metabolites compared with widespread species firstly diverged. The high proportion of lignans was highly related to the environmental pressure. This review provided a new clue for the systematic study on the variation pattern of chemical diversity in the taxa within genus in the light of evolution.

Cite this article

Zhaoyu Zhang, Qingyun Wang, Lei Shi, Wengang Yu, Yongqing Zhang, Hongxia Cui . Secondary Metabolites of Syringa and the Linking with Phylogenetic Evolution and Geographical Distributions[J]. Chinese Bulletin of Botany, 2021 , 56(4) : 470 -479 . DOI: 10.11983/CBB20178

References

[1] 崔洪霞, 蒋高明, 臧淑英 (2004). 丁香属植物的地理分布及其起源演化. 植物研究 (02), 141-145.
[2] 董娟娥, 张康健, 梁宗锁 (2009). 植物次生代谢与调控. 杨凌: 西北农林科技大学出版社. pp. 102-119.
[3] 杜玮炜, 黄宏文 (2008). 雷公藤次生代谢产物雷公藤红素含量与环境因子相关性分析. 植物学通报 25, 707-713.
[4] 高坤, 常金科, 黎家 (2018). 植物根向水性反应研究进展. 植物学报 53, 154-163.
[5] 高艳, 崔洪霞, 石雷, 曲延英 (2008). 丁香属植物叶片表皮形态特征与环境适应及系统学关联. 西北植物学报 28, 475-484.
[6] 刘津, 于思礼, 马雅婷, 张铁军, 赵广荣 (2016). 天然木脂素的代谢工程和合成生物学研究进展. 中草药 47, 2556-2562.
[7] 刘盟盟, 贾丽, 程路芸, 张洪芹, 臧晓琳, 宝音陶格涛, 张汝民, 高岩 (2017). 冷蒿酚酸及其抗氧化防御酶活性对机械损伤的响应. 植物生态学报 41, 219-230.
[8] 刘晓侠, 刘吉利, 吴娜, 相宗杰, 刘根红, 康建宏 (2015). 不同地域枸杞主要次生代谢物含量与初生代谢物含量的关系研究. 北方园艺 (23), 163-169.
[9] 苏国柱, 陈洁, 曹愿, 白睿峰, 陈苏依勒, 屠鹏飞, 柴兴云 (2015). 蒙药山沉香的化学成分和药理活性研究进展. 中国中药杂志 40, 4333-4338.
[10] 王宇希 (2013). 丁香叶总黄酮的提取工艺及抑菌效果评价. 硕士论文. 哈尔滨: 东北农业大学. pp. 8-23.
[11] 魏华, 王岩, 刘宝辉, 王雷 (2018). 植物生物钟及其调控生长发育的研究进展. 植物学报 53, 456-467.
[12] 杨然, 方磊, 李佳, 张永清 (2018). 环烯醚萜苷类生物合成途径及相关酶的研究进展. 中草药 49, 2482-2488.
[13] 藏淑英, 李容辉 (1992). 论丁香属植物引种的现状与前景. 植物学通报 (2), 30-33.
[14] 张美珍, 缪柏茂, 陆瑞林, 邱莲卿, 韦直, 李秉滔 (1992). 中国植物志, 第61卷. 北京: 科学出版社. pp. 155-156.
[15] 张旭, 王小佳, 黎思辰, 董甜甜, 汪志辉 (2019). 柑橘果实粒化过程中木质素生物合成与调控研究进展. 浙江农业学报 31, 2131-2140.
[16] 张永增 (2018). 次生代谢产物在种子植物生命之树中的分布规律. 博士论文. 昆明: 云南大学. pp. 20-44.
[17] 祝志欣, 鲁迎青 (2016). 花青素代谢途径与植物颜色变异. 植物学报 51, 107-119.
[18] Allevato DM, Groppo M, Kiyota E, Mazzafera P, Nixon KC (2019). Evolution of phytochemical diversity in Pilocarpus (Rutaceae). Phytochemistry 163, 132-146.
[19] Chadwick M, Trewin H, Gawthrop F, Wagstaff C (2013). Sesquiterpenoids lactones: benefits to plants and people. Int J Mol Sci 14, 12780-12805.
[20] Chen F, Tholl D, Bohlmann J, Pichersky E (2011). The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66, 212-229.
[21] Chen YG, Mulder PPJ, Schaap O, Memelink J, Klinkhamer PGL, Vrieling K (2020). The evolution of pyrrolizidine alkaloid diversity among and within Jacobaea species. J Syst Evol doi: 10.1111/jse.12671.
[22] Cui HX, Cong SH, Wang XZ, Hao HP, Shi L, Zhang HJ, Li ZG, Hu TH, Qin YS (2016). Mechanistic examination of causes for narrow distribution in an endangered shrub: a comparison of its responses to drought stress with a widespread congeneric species. Trees 30, 2227-2236.
[23] Ernst M, Saslis-Lagoudakis CH, Grace OH, Nilsson N, Simonsen HT, Horn JW, Rønsted N (2016). Evolutionary prediction of medicinal properties in the genus Euphorbia L. Sci Rep 6, 30531.
[24] Fiala JL (2008). Lilacs. Portland, London: Timber Press. pp. 1-508.
[25] Filipek A, Wyszomierska J, Michalak B, Kiss AK (2019). Syringa vulgaris bark as a source of compounds affecting the release of inflammatory mediators from human neutrophils and monocytes/macrophages. Phytochem Lett 30, 309-313.
[26] Gaylord ML, Kolb TE, Pockman WT, Plaut JA, Yepez EA, Macalady AK, Pangle RE, McDowell NG (2013). Drought predisposes piñon-juniper woodlands to insect attacks and mortality. New Phytol 198, 567-578.
[27] Guitton Y, Nicolè F, Jullien F, Caissard JC, Saint-Marcoux D, Legendre L, Pasquier B, Moja S (2018). A comparative study of terpene composition in different clades of the genus Lavandula. Bot Lett 165, 494-505.
[28] Kim KJ, Jansen RK (1998). A chloroplast DNA phylogeny of lilacs (Syringa, Oleaceae): plastome groups show a strong correlation with crossing groups. Am J Bot 85, 1338-1351.
[29] Konno K, Hirayama C, Yasui H, Nakamura M (1999). Enzymatic activation of oleuropein: a protein crosslinker used as a chemical defense in the privet tree. Proc Natl Acad Sci USA 96, 9159-9164.
[30] Lendvay B, Kadereit JW, Westberg E, Cornejo C, Pedryc A, Höhn M (2016). Phylogeography of Syringa josikaea (Oleaceae): Early Pleistocene divergence from East Asian relatives and survival in small populations in the Carpathians. Biol J Linn Soc 119, 689-703.
[31] Li JH, Goldman-Huertas B, DeYoung J, Alexander J (2012). Phylogenetics and diversification of Syringa inferred from nuclear and plastid DNA sequences. Castanea 77, 82-88.
[32] McKelvey SD (1928). The Lilac. New York, Boston, Chicago, Dallas, Atlanta, San Francisco: The Macmillan Company. pp.1-121.
[33] Mint Evolutionary Genomics Consortium (2018). Phylogenomic mining of the mints reveals multiple mechanisms contributing to the evolution of chemical diversity in Lamiaceae. Mol Plant 11, 1084-1096.
[34] Rehder A (1940). Manual of Cultivated Trees and Shrubs. New York:Macmillan. pp. 777-783.
[35] Rønsted N, Savolainen V, Mølgaard P, Jäger AK (2008). Phylogenetic selection of Narcissus species for drug discovery. Biochem Syst Ecol 36, 417-422.
[36] Sedio BE (2017). Recent breakthroughs in metabolomics promise to reveal the cryptic chemical traits that mediate plant community composition, character evolution and lineage diversification. New Phytol 214, 952-958.
[37] Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng BS (2019). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24, 2452.
[38] Thakur M, Bhattacharya S, Khosla PK, Puri S (2019). Improving production of plant secondary metabolites through biotic and abiotic elicitation. J Appl Res Med Aroma Plants 12, 1-12.
[39] Varga E, Barabás C, Tóth A, Boldizsár I, Noszál B, Tóth G (2019). Phenolic composition, antioxidant and antinociceptive activities of Syringa vulgaris L. bark and leaf extracts. Nat Prod Res 33, 1664-1669.
[40] Vleminckx J, Salazar D, Fortunel C, Mesones I, Davila N, Lokvam J, Beckley K, Baraloto C, Fine PVA (2018). Divergent secondary metabolites and habitat filtering both contribute to tree species coexistence in the Peruvian Amazon. Front Plant Sci 9, 836.
[41] Wang SC, Alseekh S, Fernie AR, Luo J (2019). The structure and function of major plant metabolite modifications. Mol Plant 12, 899-919.
[42] Xu SQ, Yao SC, Huang RS, Tan Y, Huang D (2020). Transcriptome-wide analysis of the AP2/ERF transcription factor gene family involved in the regulation of gypenoside biosynthesis in Gynostemma pentaphyllum. Plant Physiol Biochem 154, 238-247.
[43] Zhang RF, Feng X, Su GZ, Mu ZJ, Zhang HX, Zhao YN, Jiao SG, Cao L, Chen SYL, Tu PF, Chai XF (2018). Bioactive sesquiterpenoids from the peeled stems of Syringa pinnatifolia. J Nat Prod 81, 1711-1720.
Outlines

/

674-3466/bottom_en.htm"-->