[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]

The Measurement Methods and Principles of P700 Redox Kinetics

Expand
  • Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China

Received date: 2020-04-20

  Accepted date: 2020-08-26

  Online published: 2020-08-26

Abstract

P700 redox technique is referred to examine plant photosystem I (PSI) function quickly and non-intrusively, and widely used in the field of photosynthesis research. In this paper, we summarize the main measurement methods of the P700 redox kinetics systematically, expound its principles, and discuss the limitations. The aim is to provide a technical support for in-depth study of photosynthesis mechanisms.

Cite this article

Chunyan Zhang . The Measurement Methods and Principles of P700 Redox Kinetics[J]. Chinese Bulletin of Botany, 2020 , 55(6) : 740 -748 . DOI: 10.11983/CBB20064

[an error occurred while processing this directive]

References

[1] 高坤山 (2014). 藻类固碳: 理论、进展与方法. 北京: 理科学出版社. pp. 426-427.
[2] 沈同, 王镜岩, 赵邦悌, 李建武, 徐长法, 朱圣庚, 俞梅敏, 杨端, 杨福愉 (1991). 生物化学(第2版). 北京: 高等教育出版社. pp. 139.
[3] 姚正菊, 米华玲, 叶济宇 (2002). 光诱导叶片P-700氧化还原的测量. 植物生理学通讯 38, 54-56.
[4] 郁飞, 唐崇钦, 辛越勇, 彭德川, 许亦农, 李良璧, 匡廷云 (2001). 光系统I (PSI)的结构与功能研究进展. 植物学通报 18, 266-275.
[5] Alric J, Lavergne J, Rappaport F (2010). Redox and ATP control of photosynthetic cyclic electron flow in Chlamydomonas reinhardtii (I) aerobic conditions. Biochim Biophys Acta 1797, 44-51.
[6] Amunts A, Drory O, Nelson N (2007). The structure of a plant photosystem I supercomplex at 3.4 ? resolution. Nature 447, 58-63.
[7] Amunts A, Nelson N (2009). Plant photosystem I design in the light of evolution. Structure 17, 637-650.
[8] Andreeva A, Tikhonov AN (1983). Comparative study on the kinetics of electron transport and the slow chlorophyll fluorescence in bean leaves. Photobiochem Photobiophys 6, 261-266.
[9] Asada K, Heber U, Schreiber U (1992). Pool size of electrons that can be donated to P700+ as determined in intact leaves: donation to P700+ from stromal components via the intersystem chain . Plant Cell Physiol 33, 927-932.
[10] Ballottari M, Alcocer MJP, D'Andrea C, Viola D, Ahn TK, Petrozza A, Polli D, Fleming GR, Cerullo G, Bassi R (2014). Regulation of photosystem I light harvesting by zeaxanthin. Proc Natl Acad Sci USA 111, E2431-E2438.
[11] Bonente G, Pippa S, Castellano S, Bassi R, Ballottari M (2012). Acclimation of Chlamydomonas reinhardtii to different growth irradiances. J Biol Chem 287, 5833-5847.
[12] Brettel K (1997). Electron transfer and arrangement of the redox cofactors in photosystem I. Biochim Biophys Acta 1318, 322-373.
[13] Brettel K, Leibl W (2001). Electron transfer in photosystem I. Biochim Biophys Acta 1507, 100-114.
[14] Cao P, Cao DF, Si L, Su XD, Tian LJ, Chang WR, Liu ZF, Zhang XZ, Li M (2020). Structural basis for energy and electron transfer of the photosystem I-IsiA-flavodoxin supercomplex. Nat Plants 6, 167-176.
[15] Díaz-Quintana A, Leibl W, Bottin H, Sétif P (1998). Electron transfer in photosystem I reaction centers follows a linear pathway in which iron-sulfur cluster FB is the immediate electron donor to soluble ferredoxin. Biochemistry 37, 3429-3439.
[16] Fristedt R, Williams-Carrier R, Merchant SS, Barkan A (2014). A thylakoid membrane protein harboring a DnaJ-type zinc finger domain is required for photosystem I accumulation in plants. J Biol Chem 289, 30657-30667.
[17] Haehnel W (1984). Photosynthetic electron transport in higher plants. Annu Rev Plant Physiol 35, 659-693.
[18] Harbinson J, Hedley CL (1989). The kinetics of P-700+ reduction in leaves: a novel in situ probe of thylakoid functioning Plant Cell Environ 12, 357-369.
[19] Harbinson J, Hedley CL (1993). Changes in P-700 oxidation during the early stages of the induction of photosynthesis. Plant Physiol 103, 649-660.
[20] Harbinson J, Woodward FI (1987). The use of light-induced absorbance changes at 820 nm to monitor the oxidation state of P-700 in leaves. Plant Cell Environ 10, 131-140.
[21] Hiyama T, Ke B (1971). A new photosynthetic pigment, "P430": its possible role as the primary electron acceptor of Photosystem I. Proc Natl Acad Sci USA 68, 1010-1013.
[22] Iwai M, Takizawa K, Tokutsu R, Okamuro A, Takahashi Y, Minagawa J (2010). Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 464, 1210-1213.
[23] Joliot P, Johnson GN (2011). Regulation of cyclic and linear electron flow in higher plants. Proc Natl Acad Sci USA 108, 13317-13322.
[24] Joliot P, Joliot A (2005). Quantification of cyclic and linear flows in plants. Proc Natl Acad Sci USA 102, 4913-4918.
[25] Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krau? N (2001). Three-dimensional structure of cyanobacterial photosystem I at 2.5 ? resolution. Nature 411, 909-917.
[26] Kadota K, Furutani R, Makino A, Suzuki Y, Wada S, Miyake C (2019). Oxidation of P700 induces alternative electron flow in photosystem I in wheat leaves. Plants (Basel) 8, 152.
[27] Ke B (1973). The primary electron acceptor of photosystem I. Biochim Biophys Acta 301, 1-33.
[28] Klughammer C, Schreiber U (1994). An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm. Planta 192, 261-268.
[29] Klughammer C, Schreiber U (1998). Measuring P700 absorbance changes in the near infrared spectral region with a dual wavelength pulse modulation system. In: Garab G, ed. Photosynthesis: Mechanisms and Effects. Dordrecht: Sprin-ger. pp. 4357-4360.
[30] Klughammer C, Schreiber U (2008). Saturation pulse method for assessment of energy conversion in PS I. PAM Appl Notes 1, 11-14.
[31] Kok B (1957). Light induced absorption changes in photosynthetic organisms. Acta Bot Neerl 6, 316-336.
[32] Kou JC, Oguchi R, Fan DY, Chow WS (2012). The time course of photoinactivation of photosystem II in leaves revisited. Photosynth Res 113, 157-164.
[33] Liu J, Yang HY, Lu QT, Wen XG, Chen F, Peng LW, Zhang LX, Lu CM (2012). PsbP-domain protein1, a nuclear-encoded thylakoid lumenal protein, is essential for photosystem I assembly in Arabidopsis. Plant Cell 24, 4992-5006.
[34] Losciale P, Oguchi R, Hendrickson L, Hope AB, Corelli- Grappadelli L, Chow WS (2008). A rapid, whole- tissue determination of the functional fraction of PSII after photoinhibition of leaves based on flash-induced P700 redox kinetics. Physiol Plant 132, 23-32.
[35] Maxwell PC, Biggins J (1976). Role of cyclic electron transport in photosynthesis as measured by the photoinduced turnover of P700 in vivo. Biochemistry 15, 3975-3981.
[36] Meurer J, Meierhoff K, Westhoff P (1996). Isolation of high- chlorophyll-fluorescence mutants of Arabidopsis thaliana and their characterisation by spectroscopy, immunoblotting and northern hybridisation. Planta 198, 385-396.
[37] Mozzo M, Mantelli M, Passarini F, Caffarri S, Croce R, Bassi R (2010). Functional analysis of Photosystem I light-harve-sting complexes (Lhca) gene products of Chlamydomonas reinhardtii. Biochim Biophys Acta 1797, 212-221.
[38] Nguyen K, Vaughn M, Frymier P, Bruce BD (2017). In vitro kinetics of P700 + reduction of Thermosynechococcus elongatus trimeric Photosystem I complexes by recombinant cytochrome c6 using a Joliot-type LED spectrophotometer. Photosynth Res 131, 79-91.
[39] Pfündel E, Klughammer C, Schreiber U (2008). Monitoring the effects of reduced PSII antenna size on quantum yields of photosystems I and II using the Dual-PAM-100 measuring system. PAM Appl Notes 1, 21-24.
[40] Pi X, Tian LR, Dai HE, Qin XC, Cheng LP, Kuang TY, Sui SF, Shen JR (2018). Unique organization of photosystem I- light-harvesting supercomplex revealed by cryo-EM from a red alga. Proc Natl Acad Sci USA 115, 4423-4428.
[41] Qin XC, Pi X, Wang WD, Han GY, Zhu LX, Liu MM, Cheng LP, Shen JR, Kuang TY, Sui SF (2019). Structure of a green algal photosystem I in complex with a large number of light- harvesting complex I subunits. Nat Plants 5, 263-272.
[42] Qin XC, Suga M, Kuang TY, Shen JR (2015). Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science 348, 989-995.
[43] Schreiber U (2017). Redox changes of ferredoxin, P700, and plastocyanin measured simultaneously in intact leaves. Photosynth Res 134, 343-360.
[44] Schreiber U, Klughammer C, Neubauer C (1988). Measuring P700 absorbance changes around 830 nm with a new type of pulse modulation system. Z Naturforsch C 43, 686-698.
[45] Sétif P (2001). Ferredoxin and flavodoxin reduction by photosystem I. Biochim Biophys Acta 1507, 161-179.
[46] Takahashi H, Clowez S, Wollman FA, Vallon O, Rappaport F (2013). Cyclic electron flow is redox-controlled but independent of state transition. Nat Commun 4, 1954.
[47] Varotto C, Pesaresi P, Meurer J, Oelmüller R, Steiner-Lange S, Salamini F, Leister D (2000). Disruption of the Arabidopsis photosystem I gene psaE1 affects photosynthesis and impairs growth. Plant J 22, 115-124.
[48] Vassiliev IR, Jung YS, Yang F, Golbeck JH (1998). PsaC subunit of photosystem I is oriented with iron-sulfur cluster FB as the immediate electron donor to ferredoxin and flavodoxin. Biophys J 74, 2029-2035.
[49] Wang L, Li QW, Zhang AH, Zhou W, Jang R, Yang ZP, Yang HX, Qin XC, Ding SH, Lu QT, Wen XG, Lu CM (2017). The phytol phosphorylation pathway is essential for the biosynthesis of phylloquinone, which is required for photosystem I stability inArabidopsis. Mol Plant 10, 183-196.
[50] Weis E, Ball JT, Berry J (1987). Photosynthetic control of electron transport in leaves of Phaseolus vulgaris: evidence for regulation of photosystem 2 by the proton gradient. In: Biggins J, ed. Progress in Photosynthesis Research. Dordrecht:Springer. pp. 553-556.
[51] Yang HX, Liu J, Wen XG, Lu CM (2015). Molecular mechanism of photosystem I assembly in oxygenic organisms. Biochim Biophys Acta 1847, 838-848.
[52] Yang HY, Li P, Zhang AH, Wen XG, Zhang LX, Lu CM (2017). Tetratricopeptide repeat protein Pyg7 is essential for photosystem I assembly by interacting with PsaC in Arabidopsis. Plant J 91, 950-961.
[53] Zhou W, Lu QT, Li QW, Wang L, Ding SH, Zhang AH, Wen XG, Zhang LX, Lu CM (2017). PPR-SMR protein SOT1 has RNA endonuclease activity. Proc Natl Acad Sci USA 114, E1554-E1563.
Outlines

/

[an error occurred while processing this directive]