Spectral Characteristics of Phragmites australis and Its Response to Riverine Nitrogen and Phosphorus Contents in River Reaches Restored by Reclaimed Water
Received date: 2020-05-15
Accepted date: 2020-07-29
Online published: 2020-07-29
Reclaimed water is an important water source replenishing rivers and lakes for urban landscape. Higher contents of nitrogen and phosphorus in reclaimed water will cause eutrophication, disrupting the balance of hydro-ecology. Hyperspectral technology was applied to analyze the spectral characteristics of the emergent plant Phragmites australis, and the spectral characteristics response of P. australis leaf to nitrogen and phosphorus contents were explored in the Chaobai River restored by reclaimed water. Results showed that concentrations of total nitrogen (TN), total phosphorus (TP), chlorophyll a (Chl a), and dissolved oxygen (DO) were 1.85-18.16 mg·L -1, 0.01-0.36 mg·L-1, 0.60-47.45 μg·L -1, and 4.24-11.4 mg·L-1, respectively. Although the river water eutrophication was serious, it was still in an oxygen-rich environment. The results showed that there were significant differences in the concentrations of TN, TP, and Chl a among sampling sites (P<0.05) in multiple analysis of variance. With the increasing of riverine TN concentrations, the reflectance of leaf spectrum in the visible band lowered and the position of red edge also moved towards higher wavelength (i.e., redshift). The riverine TN and TP contents had significant correlations with the absorbance value log(1/R) in the visible band in correlation analysis, and the correlation coefficients between TN and log(1/R) were higher than that of TP. The difference of TN concentrations could be inferred by the spectrum of P. australis leaf to a certain extent, while the effect of TP on spectral characteristics was weaker than TN. TN was selected to establish fitting models with different spectral indices. Based on the photochemical reflectance index (PRI), the modified chlorophyll absorption ratio index (MCARI) and the derivative chlorophyll index (DCI), the exponential equations explained 62.4%-70.9% of TN (P<0.05), which could be useful for quantitatively monitoring of nitrogen contents in reclaimed water. This research proved practicability of plant spectrum technology in water eutrophication monitoring, providing a scientific basis for ensuring water quality safety and ecological security in rivers and lakes restored by reclaimed water.
Rui Zhao, Hongmei Bu, Xianfang Song, Rongjin Gao . Spectral Characteristics of Phragmites australis and Its Response to Riverine Nitrogen and Phosphorus Contents in River Reaches Restored by Reclaimed Water[J]. Chinese Bulletin of Botany, 2020 , 55(6) : 666 -676 . DOI: 10.11983/CBB20085
[1] | 迟光宇, 刘新会, 刘素红, 杨志峰 (2005). 环境污染监测中的植物光谱效应研究. 环境科学与技术 28(S1), 16-19. |
[2] | 宫兆宁, 范云豹, 刘辉, 赵文吉 (2016). 不同水氮梯度下典型挺水植物叶绿素荧光的响应特性. 植物学报 51, 631-638. |
[3] | 顾永钢, 吴晓辉, 李兆欣, 赵立新, 刘操 (2017). 潮白河再生水受水区水体水质沿程变化规律研究. 北京水务 (1), 29-35. |
[4] | 李玲玉, 杨浩萌, 任为波, 吴新宏, 黄芳 (2017). 利用叶绿素荧光评估草原植物羊草缺磷缺氮状况. 植物学报 52, 271-277. |
[5] | 李哲, 张飞, 陈丽华, 张海威 (2018). 光谱指数的植物叶片叶绿素含量估算模型. 光谱学与光谱分析 38, 1533-1539. |
[6] | 刘辉, 宫兆宁, 赵文吉 (2014). 基于挺水植物高光谱信息的再生水总氮含量估测——以北京市门城湖湿地公园为例. 应用生态学报 25, 3609-3618. |
[7] | 刘克, 唐新明, 赵文吉, 雷兵, 郭逍宇, 宫兆宁 (2015). 水体总氮浓度与湿地芦苇叶片高光谱特征关系研究. 地理与地理信息科学 31(2), 24-28. |
[8] | 刘克, 赵文吉, 郭逍宇, 王翊虹, 孙永华, 苗茜, 王京萌 (2012). 基于湿地植物光谱的水体总氮估测. 生态学报 32, 2410-2419. |
[9] | 刘瑞斌 (2019). 人工湿地植物群落造景艺术研究——评《人工湿地植物配置与管理》. 植物学报 54, 674. |
[10] | 任红艳, 庄大方, 潘剑君, 邱冬生, 张佳宝 (2008). 磷营养胁迫对冬小麦冠层光谱的影响. 土壤通报 39, 1326-1330. |
[11] | 王健, 何江涛, 刘玉梅, 姜烈 (2014). 潮白河再生水受水区水质变化特征多元统计分析. 环境科学与技术 37(6), 171-176. |
[12] | 薛利红, 曹卫星, 罗卫红, 张宪 (2004). 小麦叶片氮素状况与光谱特性的相关性研究. 植物生态学报 28, 172-177. |
[13] | 薛利红, 卢萍, 杨林章, 单玉华, 范晓晖, 韩勇 (2006). 利用水稻冠层光谱特征诊断土壤氮素营养状况. 植物生态学报 30, 675-681. |
[14] | 于一雷 (2013). 河道景观再生水对地下水影响研究——以潮白河北京段为例. 博士论文. 北京: 中国科学院大学. pp. 18-20. |
[15] | 张丽彬, 王启山, 徐新惠, 丁丽丽, 任洪强 (2008). 乙醇法测定浮游植物叶绿素a含量的讨论. 中国环境监测 24(6), 9-10. |
[16] | 张璐, 何新华 (2020). C3和C4植物的氮素利用机制. 植物学报 55, 228-239. |
[17] | ?张茜, 裘天航, 王安安, 周华健, 袁敏, 李利, 白素兰, 崔素霞 (2020). 北京地区芦苇资源状态及其多样性. 植物学报 55, 693-704. |
[18] | ?gren GI (2004). The C:N:P stoichiometry of autotrophs- theory and observations. Ecol Lett 7, 185-191. |
[19] | ?gren GI (2008). Stoichiometry and nutrition of plant growth in natural communities. Annu Rev Ecol Evol Syst 39, 153-170. |
[20] | Bricker SB, Ferreira JG, Simas T (2003). An integrated methodology for assessment of estuarine trophic status. Ecol Modell 169, 39-60. |
[21] | Chang DH, Ma Z (2012). Wastewater reclamation and reuse in Beijing: influence factors and policy implications. Desalination 297, 72-78. |
[22] | Daughtry CST, Walthall CL, Kim MS, De Colstoun EB, McMurtrey III JE (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens Environ 74, 229-239. |
[23] | Eitel JUH, Long DS, Gessler PE, Hunt ER (2008). Com-bined spectral index to improve ground-based estimates of nitrogen status in dryland wheat. Agron J 100, 1694-1702. |
[24] | Eller F, Skálová H, Caplan JS, Bhattarai GP, Burger MK, Cronin JT, Guo WY, Guo X, Hazelton ELG, Kettenring KM, Lambertini C, McCormick MK, Meyerson LA, Mozdzer TJ, Py?ek P, Sorrell BK, Whigham DF, Brix H (2017). Cosmopolitan species as models for ecophysio- logical responses to global change: the common reed Phragmites australis. Front Plant Sci 8, 1833. |
[25] | Gamon JA, Serrano L, Surfus JS (1997). The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 112, 492-501. |
[26] | Gitelson AA, Merzlyak MN (1997). Remote estimation of chlorophyll content in higher plant leaves. Int J Remote Sens 18, 2691-2697. |
[27] | Horler DNH, Dockray M, Barber J (1983). The red edge of plant leaf reflectance. Int J Remote Sens 4, 273-288. |
[28] | Knipling EB (1970). Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sens Environ 1, 155-159. |
[29] | Kokaly RF (2001). Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration. Remote Sens Environ 75, 153-161. |
[30] | Lamb DW, Steyn-Ross M, Schaare P, Hanna MM, Silvester W, Steyn-Ross A (2002). Estimating leaf nitrogen concentration in ryegrass ( Lolium spp.) pasture using the chlorophyll red-edge: theoretical modelling and experimental observations. Int J Remote Sens 23, 3619-3648. |
[31] | Li F, Miao YX, Hennig SD, Gnyp ML, Chen XP, Jia LL, Bareth G (2010). Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages. Precision Agric 11, 335-357. |
[32] | Lyu S, Chen WP, Zhang WL, Fan YP, Jiao WT (2016). Wastewater reclamation and reuse in China: opportunities and challenges. J Environ Sci 39, 86-96. |
[33] | Mykleby PM, Awada T, Lenters JD, Bihmidine S, Yarina AJ, Young SL (2015). Responses of common reed (Ph-ragmites australis) to nitrogen and temperature manipulations. Great Plains Research 25, 63-74. |
[34] | Osborne SL, Schepers JS, Francis DD, Schlemmer MR (2002). Detection of phosphorus and nitrogen deficiencies in corn using spectral radiance measurements. Agron J 94, 1215-1221. |
[35] | Shrestha S, Brueck H, Asch F (2012). Chlorophyll index, photochemical reflectance index and chlorophyll fluorescence measurements of rice leaves supplied with different N levels. J Photochem Photobiol B 113, 7-13. |
[36] | Siciliano D, Wasson K, Potts DC, Olsen RC (2008). Evaluating hyperspectral imaging of wetland vegetation as a tool for detecting estuarine nutrient enrichment. Remote Sens Environ 112, 4020-4033. |
[37] | Tanner CC (1996). Plants for constructed wetland treatment systems—a comparison of the growth and nutrient uptake of eight emergent species. Ecol Eng 7, 59-83. |
[38] | Tilley DR, Ahmed M, Son JH, Badrinarayanan H (2003). Hyperspectral reflectance of emergent macrophytes as an indicator of water column ammonia in an oligohaline, subtropical marsh. Ecol Eng 21, 153-163. |
[39] | Wu CY, Niu Z, Tang Q, Huang WJ (2008). Estimating chlorophyll content from hyperspectral vegetation indices: modeling and validation. Agric For Meteorol 148, 1230-1241. |
[40] | Yang L, He JT, Liu YM, Wang J, Jiang L, Wang GC (2016). Characteristics of change in water quality along reclaimed water intake area of the Chaobai River in Beijing, China. J Environ Sci 50, 93-102. |
[41] | Yoder BJ, Pettigrew-Crosby RE (1995). Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400-2 500 nm) at leaf and canopy scales. Remote Sens Environ 53, 199-211. |
[42] | Zarco-Tejada PJ, Miller JR, Mohammed GH, Noland TL, Sampson PH (2002). Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery. J Environ Qual 31, 1433-1441. |
[43] | Zarco-Tejada PJ, Pushnik JC, Dobrowski S, Ustin SL (2003). Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak re- dedge effects. Remote Sens Environ 84, 283-294. |
/
〈 | 〉 |